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Chapter 1
Complex Numbers

1.1
Some Background Knowledge

First, we define

R [x] to be the set of polynomials with real coefficients.

The polynomial x2 +1 ∈R [x] of degree 2 over R has no solution in R since for all α ∈R, we have α2 +1 > 0,
so x2 + 1 is irreducible over R [x]. For those who have prior knowledge on Abstract Algebra, since R [x] is a
principal ideal domain (PID)†, then(

x2 +1
)
R [x]⊆ R [x] is a maximal ideal.

As such, we are now in position to define the complex numbers C.

Definition 1.1 (complex numbers). Define

C= R [x]/
(
x2 +1

)
R [x]

to be the quotient ring of R [x] modulo the maximal ideal
(
x2 +1

)
R [x]. This is a field, known as the field

of complex numbers.

Proposition 1.1. The image of

x ∈ R [x] in C is denoted by i ∈ C,

called the imaginary unit. i has the property that i2 =−1.

Proposition 1.2 (field extension). The composite of the canonical ring homomorphisms

R ↪→ R [x]↠ C where x 7→ i

is an inclusion of fields R ↪→ C so C is a field extension of R.

Proposition 1.3. As an R-vector space, C has dimension 2 with standard ordered R-basis {1, i}.

Definition 1.2. The R-linear projection maps

Re : C→ R where z 7→ x and Im : C→ R where z 7→ y

†Recall from MA3201 that if F is a field, then F [x] is a Euclidean domain. In fact, recall the chain of inclusions ED ⊆ PID ⊆ UFD,
where ED and UFD denote Euclidean domain and unique factorisation domain respectively. I recall in one of Sadhukhan’s MA2101S
that one student asked whether F is a field implies F [x] is also a field. Clearly, this is wrong and Sadhukhan mentioned that F [x] is
a UFD. It was only when I crashed one of Bao Haunchen’s MA4203 lectures (first lecture actually) where I learnt that the stronger
statement F [x] is an ED holds.
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are called the real part and imaginary part of z ∈ C. So,

for all z ∈ C one has z = Rez+ i Imz in C.

Proposition 1.4 (field operations). The field operations of C, expressed in terms of the real/imaginary
parts, are:

(i) Addition/Subtraction:
(a+ ib)± (c+ id) = (a± c)+ i(b±d)

(ii) Multiplication:
(a+ ib) · (c+ id) = (ac−bd)+ i(ad +bc)

(iii) Division:
(a+ ib)
(c+ id)

=
(ac+bd)+ i(ad −bc)

c2 +d2

(iv) Multiplicative inverse:

(c+ id)−1 =
c− id

c2 +d2

Definition 1.3 (complex conjugation). The R-linear map

(·) : C→ C where z = x+ iy 7→ z = x− iy

is called complex conjugation.

Proposition 1.5. We say that complex conjugation is an automorphism of C as a field over R. The
automorphism group Aut(C/R) is of order 2. That is to say,

z = z.

Proposition 1.6. The following properties hold for all z,w ∈ C:
(i) z+w = z+w and zw = zw

(ii) Rez = 1
2 (z+ z) and Imz = 1

2i (z− z)

Definition 1.4 (absolute value). The absolute value of a complex number is the map

|·|C : C→ R≥0 where z 7→ |z|C given by |z|C =

√
(Rez)2 +(Imz)2 =

√
zz.

As such, if z = x+ iy (where x,y ∈ R), we have

|z|2C = x2 + y2 = zz.

Proposition 1.7. For any a ∈ R⊆ C, we have |a|C = |a|R.
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Lemma 1.1. For any z,w ∈ C, we have
(i) Positive-definiteness: |z|C = 0 in R≥0 if and only if z = 0 in C

(ii) |z|C = |z|C in R≥0

(iii) Multiplicativity: |zw|C = |z|C |w|C in R≥0

(iv) |Rez|R , |Im(z)|R ≤ |z|C in R≥0

Proof. (i) and (ii) are trivial. To prove (iii), we have

|zw|2C = zwzw = zz ·ww = |z|2C |w|
2
C .

Taking square roots on both sides, (iii) follows.

For (iv), let z = x+ iy, where x,y ∈ R. Then, x2,y2 ≤ x2 + y2, so |x|R ≤ |z|C and |y|R ≤ |z|C.

Lemma 1.2 (triangle inequality). For any z,w ∈ C, we have

|z+w|C ≤ |z|C+ |w|C in R≥0.

Proof. We have

|z+w|2C = (z+w)(z+w) = zz+ww+(zw+ zw)

= |z|2C+ |w|2C+2Re(zw)

≤ |z|2C+ |w|2C+2 |zw|C by (iv) of Lemma 1.1

= |z|2C+ |w|2C+2 |z|C |w|C
= (|z|C+ |w|C)

2

Taking square roots on both sides, the result follows.

By (i) and (iii) of Lemma 1.1 on the positive-definiteness and multiplicativity, as well as Lemma 1.2 on the
triangle inequality, we infer that

|·|C is an absolute value of C in the abstract sense.

Corollary 1.1. We say that

C equipped with the absolute value function |·|C as a normed R-vector space

is isomorphic to R2 with the standard Euclidean norm ∥·∥2, so C is said to be Cauchy complete.

Corollary 1.2 (generalised triangle inequality). For any z1,z2, . . . ,zn ∈ C, we have

|z1 + . . .+ zn|C ≤ |z1|C+ . . .+ |zn|C in R≥0.

Proof. Consider the triangle inequality (Lemma 1.2) and use induction.

Theorem 1.1 (Cauchy-Schwarz inequality for R2). For any z,w ∈ C, we have

|⟨z,w⟩R2 |R ≤ |z|C |w|C with equality if and only ifz and w are R-linearly dependent.
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Here, ⟨·, ·⟩ denotes the inner product of the two inputs. That is to say,

z = x+ iy and w = u+ iv implies ⟨z,w⟩R2 = xu+ yv.

Proof. The trick is as follows:

⟨z,w⟩2
R2 + ⟨iz,w⟩2

R2 = (xu+ yv)2 +(−yu+ xv)2

= x2u2 + y2v2 +2xuyv+ y2u2 + x2v2 −2yuxv

=
(
x2 + y2)(u2 + v2)

= |z|2C |w|
2
C

which implies ⟨z,w⟩R2 ≤ |z|C |w|C. Equality holds if and only if ⟨iz,w⟩R2 = 0, or equivalently, −yu+ xv = 0,
i.e. z and w are R-linearly dependent. Well, to be more explicit, we recall that

z =

[
x
y

]
and w =

[
u
v

]
as vectors in R2.

If z and w are linearly dependent, there exists k ∈ R such that (x,y) = k (u,v), so x = ku and y = kv. As such,
−yu+ xv = 0.

We can generalise Theorem 1.1 to the Cauchy-Schwarz inequality for Cn (Theorem 1.2).

Theorem 1.2 (Cauchy-Schwarz inequality for Cn). For any z1, . . . ,zn,w1, . . . ,wn ∈ C, we have

|z1w1 + . . .+ znwn|2C ≤
(
|z1|2C+ . . .+ |zn|2C

)(
|w1|2C+ . . .+ |wn|2C

)
and

equality holds if and only if


z1
...

zn

 and


w1
...

wn

 are C-linearly dependent over Cn.

Equivalently, this means that there exist λ ,µ ∈ C which are both non-zero such that

for all 1 ≤ j ≤ n we have λ z j = µw j in C.

Proof. We have

0 ≤ ∑
i< j

∣∣ziw j − z jwi
∣∣2
C

= ∑
i< j

(ziw j − z jwi)(ziw j − z jwi)

= ∑
i< j

|zi|2
∣∣w j
∣∣2 + ∣∣z j

∣∣2 |wi|2 −2Re(ziz jwiw j)

We now add the following term to both sides of the inequality:∣∣∣∣∣ n

∑
i=1

ziwi

∣∣∣∣∣
2

=
n

∑
i=1

|zi|2 |wi|2 +∑
i< j

(ziwiz jw j + ziwiz jw j)
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for which it follows that ∣∣∣∣∣ n

∑
i=1

ziwi

∣∣∣∣∣
2

≤
n

∑
i=1

|zi|2 |wi|2 +∑
i< j

(
|zi|2

∣∣w j
∣∣2 + ∣∣z j

∣∣2 |wi|2
)

=

(
n

∑
i=1

|zi|2
)(

n

∑
i=1

|wi|2
)

Equality holds if and only if

∑
i< j

∣∣ziw j − z jwi
∣∣2
C = 0.

This holds if and only if for all i < j, one has ziw j = z jwi.

Example 1.1 (MA5217 AY24/25 Sem 1 Homework 1). Find all solutions of the equation eez
= 1.

Solution. Note that 1 = e2kπi for all k ∈ Z. Since the exponential function is injective, we have ez = 2kπi.
Hence, z = ln |2kπ|+ iπ/2. □

1.2
Complex-Valued Functions

Let X be any set. Then, we have the following:

Maps(X ,R) = {all R-valued functions on X} is an R-vector space

Maps(X ,C) = {all C-valued functions on X} is a C-vector space

Proposition 1.8. The R-basis {1, i} of C gives an R-linear decomposition:

Maps(X ,C)∼= Maps(X ,R)⊕ i ·Maps(X ,R) where f 7→ Re f + i · Im f .

This is such that for any x ∈ X ,

Re( f )(x) = Re( f ) ∈ R, Im( f )(x) = Im( f ) ∈ R.

Proposition 1.9. The R-automorphism (·) of C also gives an R-linear automorphism:

(·) : Maps(X ,C)→ Maps(X ,C) where f 7→ f .

This is such that for any x ∈ X ,
f (x) = f (x) in C.

Proposition 1.10. One has the following decomposition:

Re f =
f + f

2
, Im f =

f − f
2i

.
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Chapter 2
Holomorphic and Analytic Functions

2.1
Holomorphic Functions

Definition 2.1. Let

Ω ⊆ C be an open and connected set in C

H (Ω) be the set of holomorphic functions in Ω

Definition 2.2 (holomorphic function). Let Ω⊆C be an open set. A function f : Ω→C is holomorphic
at a or C-differentiable at a (Proposition 2.3) if and only if

lim
h→0

f (a+h)− f (a)
h

exists in C.

In this case, the limit, which is uniquely determined by f and a, is called the holomorphic derivative of
f at a, denoted by

d f
dz

(a) = f ′ (a) = lim
h→0

f (a+h)− f (a)
h

in C.

As such,

f : Ω → C is holomorphic on G if and only if for all a ∈ G, f is holomorphic at a.

Proposition 2.1. Let Ω ⊆ C be an open set and f ,g : Ω → C be functions holomorphic at a. Then, the
following hold:

(i) C-linearity: for all c,d ∈ C,

the function c f +dg : Ω → C is also holomorphic at a

equipped with

its holomorphic derivative (c f +dg)′ (a) = c · f ′ (a)+d ·g′ (a) in C

(ii) Product rule: the function f ·g : C→ C is also holomorphic at a equipped with its holomorphic
derivative

( f g)′ (a) = f ′ (a)g(a)+g′ (a) f (a) in C

Remark 2.1. Recall Definition 2.1, which mentioned that H (Ω) denotes the set of all functions f : Ω→
C which are holomorphic on Ω. We say that

H (Ω) is a C-algebra under pointwise ±,× of functions.
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Note that for any point a ∈ Ω, we have the evaluation at a map, i.e.

eva : H (Ω)→ C where f 7→ f (a) ,

which is a C-algebra homomorphism.

Also, Proposition 2.1 says that the derivative at a map

H (Ω)→ C where f 7→ f ′ (a)

is a C-linear derivative of H (Ω) to the H (Ω)-module C via eva.

Example 2.1 (identity map). For any open Ω ⊂ C, the identity map id is holomorphic with derivative

id′ (a) =
dz
dz

(a) = 1 for all a ∈ G.

Hence, z ∈ H (Ω). In fact, for any polynomial f ∈ C [z]†, the function z 7→ f (z) is also H (G).

Example 2.2. For any open G = C× = C\{0}, the reciprocal function z−1 is holomorphic with derivative

dz−1

dz
(a) =− 1

a2 for all a ∈ G.

Hence, z−1 ∈ H (Ω). Moreover, for any Laurent polynomial f ∈ C
[
z,z−1

]
(we will only discuss this when

formally defining Laurent series/polynomials in Theorem 5.1), the function z 7→ f (z) is also in H (Ω).

Proposition 2.2 (chain rule). Let Ω1,Ω2 ⊆ C be open sets. Let

f : Ω1 → C and g : Ω2 → C such that f (Ω1)⊆ Ω2

so g ◦ f : Ω1 → C is defined. If f is holomorphic at a and g is holomorphic at f (a), then g ◦ f is
holomorphic at a, equipped with its holomorphic derivative

(g◦ f )′ (a) = g′ ( f (a)) f ′ (a) .

Proof. Let b = f (a) ∈ Ω2. Define the functions ξ : Ω1 → C and η : Ω2 → C by setting

ξ (z) =


f (z)− f (a)

z−a
− f ′ (a) if z ∈ Ω1 \{a}

any value if z = a
and η (w) =


g(w)−g(b)

w−b
−g′ (b) if w ∈ Ω2 \{b}

any value if w = b.

Then, for all z ∈ Ω1 and w ∈ Ω2, we have the following in C:

f (z)− f (a) =
[

f ′ (a)+ξ (z)
]
(z−a)

g(w)−g(b) =
[
g′ (b)+η (w)

]
(w−b)

Thus, for all z ∈ Ω1, we have

g( f (z))−g( f (a)) =
(
g′ ( f (a))+η ( f (z))

)
( f (z)− f (a))

=
(
g′ ( f (a))+η ( f (z))

)(
f ′ (a)+ξ (z)

)
(z−a)

†Here, one should perhaps recall from MA3201 that C [z] denotes the set of all polynomials in z with complex coefficients. That is,
C [z] ∋ f (z) = a0 +a1z+ . . .+anzn where a0,a1, . . . ,an ∈ C.
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so for all z ∈ Ω1 \{a}, we have

g( f (z))−g( f (a))
z−a

=
(
g′ ( f (a))+η ( f (z))

)(
f ′ (a)+ξ (z)

)
.

Since

f is holomorphic at a ∈ Ω1 and

g is holomorphic at b ∈ Ω2

then

lim
z→a

ξ (z) = 0 and lim
w→b

η (w) = 0.

Also,

f is continuous at a implies lim
z→a

f (z) = f (a) = b.

Hence,

lim
z→a

g( f (z))−g( f (a))
z−a

exists in C and equals g′ ( f (a)) f ′ (a) .

Next, recall Definition 2.3 on R-differentiability from MA3210.

Definition 2.3 (R-differentiability). We say that f is R-differentiable at a if and only if there exists an
R-linear map (D f )(a) : C→ C such that

for all ε ∈ R>0, there exists δ ∈ R>0

such that

for all z ∈ G with 0 ≤ ∥z−a∥< δ we have ∥ f (z)− f (a)− (D f )(a)(z−a)∥ ≤ ε · ∥z−a∥ .

When this holds, the R-linear map (D f )(a) is uniquely determined by f and a and we call this the
derivative of f at a.

Proposition 2.3 (C-differentiability). If f is holomorphic at a (C-differentiable at a), then f is R-
differentiable at a and

(D f )(a) ∈ HomR (C,C) is the image of f ′ (a) ∈ HomC (C,C) = C

under the following canonical inclusion:

HomC (C,C) ↪→ HomR (C,C) where z 7→ multiplication by x.

Corollary 2.1. Suppose f is holomorphic on Ω and for all a ∈ G, we have f ′ (a) = 0 in C. Then, f is
locally constant on Ω.
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Proof. Let a ∈ Ω be an arbitrary point. Choose r ∈ R>0 be sufficiently small such that B(a,r)⊆ Ω, where

B(a,r) is the open ball in C centred at a of radius r.

By the mean-value inequality, for any z ∈ B(a,r), there exists ξ ∈ [a,z]⊆ B(a,r) such that

∥ f (z)− f (a)∥ ≤
∥∥ f ′ (ξ )

∥∥∥z−a∥

Since f ′ (ξ ) = 0, then f is constant of value f (a) on B(a,r).

Remark 2.2. Throughout this set of notes, we will generally use the terms open ball B(a,r) and open
disc D(a,r) interchangeably. Also, the same can be said for closed balls and closed discs.

Now, identify C with the standard R-basis {1, i}. Then, consider the following comparison:

CR2 HomR (C,C) M2×2 (R)
1, i z 7→ multiplication by z 1, i

and [
a
b

]
7→ a+bi 7→ (x+ yi 7→ (a+bi)(x+ yi) = (ax−by)+ i(bx+ay)) 7→

[
a −b
b a

]
We infer that via 1 and i, the matrix [

p q
r s

]
∈M2×2 (R)

corresponds to the R-linear map C→ C given by[
x
y

]
7→

[
p q
r s

][
x
y

]
where x+ yi 7→ (px+qy)+ i(rx+ sy) .

This R-linear map is C-linear if and only if p = s and q =−r in R. As such, we can set a = p and q =−b.

Now, again via 1 and i, write

f : Ω → C as x+ iy 7→ f (x+ iy) = u(x,y)+ iv(x,y) .

Suppose f is R-differentiable at a. Then,

(D f )(a) ∈ HomR (C,C) corresponds to

[
∂u
∂x (a)

∂u
∂y (a)

∂v
∂x (a)

∂v
∂y (a)

]
∈M2×2 (R) .

Hence, (D f )(a) lies in the image of C ↪→ HomR (C,C) if and only if

∂u
∂x

(a) =
∂v
∂y

(a) and
∂u
∂y

(a) =−∂v
∂x

(a) .

This is precisely the Cauchy-Riemann equations (will formally introduce in Theorem 2.1).

2.2
The Cauchy-Riemann Equations
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Theorem 2.1 (Cauchy-Riemann equations). Let Ω ⊆ C be an open set. Let f : Ω → C be a function
written as

x+ iy 7→ f (x+ iy) = u(x,y)+ iv(x,y) .

Suppose f is R-differentiable at a. Then,

f is holomorphic at a if and only if
∂u
∂x

(a) =
∂v
∂y

(a) and
∂u
∂y

(a) =−∂v
∂x

(a) are satisfied.

Theorem 2.2 (polar form of CR equations). If u and v are expressed in terms of polar coordinates
(r,θ), then

∂u
∂ r

=
1
r

∂v
∂θ

and
∂v
∂ r

=−1
r

∂u
∂θ

.

Proof. Using the substitution z = reiθ , we have x = r cosθ and y = r sinθ . Since f (z) = u(x,y)+ iv(x,y), we
will now perform change of variables from (x,y) to (r,θ). By the chain rule for partial derivatives, to compute
∂u/∂ r,

∂u
∂ r

=
∂u
∂x

∂x
∂ r

+
∂u
∂y

∂y
∂ r

=
∂u
∂x

cosθ +
∂u
∂y

sinθ .

By the CR equations (Theorem 2.1),
∂u
∂ r

=
∂v
∂y

cosθ − ∂v
∂x

sinθ .

To compute ∂v/∂θ ,
∂v
∂θ

=
∂v
∂x

∂x
∂θ

+
∂v
∂y

∂y
∂θ

=
∂v
∂x

(−r sinθ)+
∂v
∂y

(r cosθ).

It is thus clear that the first equation of the theorem holds true. The proof of the second theorem is left as an
exercise.

Theorem 2.3. Let f (z) = u(x,y) + iv(x,y). Suppose the first-order partial derivatives of u and v
(ux,uy,vx and vy) exist in a neighbourhood of z. If they are continuous at z and the CR equations hold,
then f is differentiable at z.

Example 2.3. Suppose

f (z) =

(z)2 /z if z ̸= 0;

0 if z = 0.

Show that the Cauchy-Riemann equations are satisfied at the point z = 0 but the derivative of f fails to exist at
z = 0.

Solution. We let z = x+ iy, where x,y ∈ R. Then, for z ̸= 0,

f (z) =
(x− iy)2

x+ iy
=

(x− iy)3

x2 + y2 =
x3 −3xy2

x2 + y2 + i
(
−3x2y+ y3

x2 + y2

)
which is of the form f (z) = u(x,y)+ iv(x,y). The reader can check that at (0,0), ux,uy,vx,vy are all zero, so the
CR equations are satisfied. Next, we consider the following limit:

L = lim
h→0

(h)2/h−0
h

= lim
h→0

(
h
h

)2

= lim
(x,y)→(0,0)

(
x− iy
x+ iy

)2

.
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Say we approach along the real axis. Then, L = 1. However, if we approach along the line y = x,

L = lim
(x,x)→(0,0)

[
x(1− i)
x(1+ i)

]2

=−1

so we conclude that f ′(0) does not exist. □

Example 2.4. Let

f (z) = f (x,y) =


xy(x+ iy)

x2 + y2 z ̸= 0,

0 z = 0.

Show that the Cauchy-Riemann equations are satisfied at z = 0 but f is not differentiable at z = 0.

Solution. We let the reader verify that the CR equations are satisfied at z = 0. As for differentiability, let
h = a+ ib, where a,b ∈ R. Then consider

f (h)− f (0)
h

=
ab(a+ ib)

(a2 +b2)(a+ ib)
=

ab
a2 +b2 .

We need to prove that as (a,b)→ (0,0), the limit L does not exist. Suppose we approach along the x-axis, then
L = 0. However, if we approach along the line y = x, we have

L = lim
a→0

a2

a2 +a2 =
1
2
.

As such, the limit L does not exist so we can conclude that f ′(0) does not exist. □

Definition 2.4 (principal logarithm). Define

Logz = ln |z|+ iArgz.

Note that Logz is a single-valued function defined on C\{0}.

−4 −2 0 2 4

−4−2024
−10

0

10
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2.3
Analytic Functions and Entire Functions

Definition 2.5 (power series). A power series over C in the variable z centred at a ∈C is a formal sum

∞

∑
n=0

an (z−a)n for all n ∈ N and an ∈ C.

Definition 2.6 (different types of convergence). Let

∞

∑
n=0

an (z−a)n with z ∈ C be a power series over C.

We say that
(i) the series converges at z ∈ C if and only if

lim
N→∞

N

∑
n=0

an (z−a)n exists in C;

(ii) the series converges absolutely at z ∈ C if and only if

∞

∑
n=0

|an (z−a)n|< ∞ in R≥0;

(iii) the series converges normally on some compact D ⊆ C if and only if

∞

∑
n=0

sup
z∈D

|an (z−a)n|< ∞ in R≥0;

(iv) the series converges locally normally on some open U ⊆C if and only if for all a ∈U , there exists
a neighbourhood D ⊆U such t hat

∞

∑
n=0

an (z−a)n converges normally on D

Example 2.5. We have the classic example of the geometric series
∞

∑
n=0

zn = 1+ z+ z2 + . . . in C.

this series converges absolutely for all z ∈C with |z|< 1 to 1/(1− z) ∈C and it does not converge for all z ∈C
with |z|> 1. Also, for all r ∈ (0,1), the series converges normally on B(0,r) and it converges locally normally
on B(0,1).

Lemma 2.1. Let

S =
∞

∑
n=0

an (z−a)n with z ∈ C be a power series over C.

Then, the following hold:
(i) If S converges absolutely at z0 ∈ C, then it converges normally on the compact set B(a, |z0 −a|)

(ii) If S converges at z0 ∈ C, then it converges locally normally on the open set B(a, |z0 −a|)
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Definition 2.7 (radius of convergence). The radius of convergence of a power series

f (z) =
∞

∑
n=0

an (z−a)n

is given by

R = sup{r ∈ R≥0 : f (z) converges at all points in B(a,r)}

= sup
{

r ∈ R≥0 : f (z) converges absolutely at all points in B(a,r)
}

We note that R ∈ R≥0.

Proposition 2.4 (Cauchy-Hadamard formula). There is a nice formula on the radius of convergence
of a power series over C which is given by

1
R
= limsup

n∈N
|an|1/n .

One notes that the Cauchy-Hadamard formula in Proposition 2.4 can be easily deduced from the root test.

Definition 2.8 (analytic function). Let U ⊆C be an open set and a∈U be a point. A C-valued function
ϕ : U → C on U is analytic at a ∈U if and only if there exists a power series

f (z) =
∞

∑
n=0

an (z−a)n centred at a with positive radius of convergence R

such that for all z ∈U ∩B(a,R), one has

ϕ (z) = f (z) =
∞

∑
n=0

an (z−a)n in C.

Then,

ϕ : U → C is an analytic function (on U) if and only if for all a ∈U, ϕ is analytic at a.

Proposition 2.5. Let

∞

∑
n=0

cnzn be a power series centred at 0 with positive radius of convergence R.

Write f : B(0,R)→ C for the C-valued function it represents. Then, f is analytic on B(0,R).

We will see an alternative and more rigorous way of formulating Proposition 2.5 in Proposition 2.6†.

Example 2.6. Show that there are no analytic functions f = u+ iv such that u(x,y) = x2 + y2.

Solution. Suppose on the contrary that there exists some analytic function f . Then, ux = 2x and uy = 2y, so by
the CR equations, vy = 2x and vx =−2y. vy = 2x implies that v(x,y) = 2xy+g(x). Taking the partial with respect
to x and substituting it into vx = −2y, we have 2y+ g′(x) = −2y. As such, g′(x) = −4y, so g(x) = −4xy+ c,

†As you will see in Proposition 2.6, the latter is indeed more rigorous. Also, I think Prof. Chin Chee Whye set something related for
an iteration of his MA2108S finals.
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where c is an arbitrary constant. Putting everything together,

f (x,y) = x2 + y2 + i(−2xy+ c) .

However, this does not satisfy ux = vy in the CR equations. So, such an f does not exist. □

Example 2.7. Suppose f is analytic and real-valued in a domain D. Prove that f is constant in D.

Solution. Suppose f (z) = u+ iv. We have Im( f ) = 0 so by the CR equations, ux = 0 and uy = −vx = 0. This
implies that f ′(z) = ux + ivx = 0 so f is constant in D. □

Example 2.8. Suppose f and f are analytic in a domain D. Show that f is constant in D.

Solution. Observe that Re( f ) =
(

f + f
)
/2 which is real-valued and analytic if both f and f are analytic. By

Example 2.7, Re( f ) is constant, so f is constant. □

Proposition 2.6. For any a ∈ B(0,R) and k ∈ N, define

dk =
∞

∑
n=k

(
n
k

)
cnan−k.

Then, the following properties hold:
(i) For all k ∈ N, the series dk converges absolutely in C

(ii) The power series

g(z) =
∞

∑
k=0

dk (z−a)k has positive radius of convergence r ≥ R−|a|> 0

(iii) For all z ∈ B(0,R)∩B(a,r), we have f (z) = g(z)

Proof. We first prove (i). Fix ρ ∈ R≥0 with |a|< ρ < R. Then,

∞

∑
k=0

(
∞

∑
n=k

(
n
k

)
|cn| |a|n−k

)
(ρ −|a|)k =

∞

∑
k=0

∞

∑
n=k

(
n
k

)
|cn| |a|n−k (ρ −|a|)k

=
∞

∑
n=0

|cn|
[

n

∑
k=0

(
n
k

)
|a|n−k (ρ −|a|)k

]
= ∑

n=0
|cn|(|a|+ρ −|a|)n

=
∞

∑
n=0

|cn|ρn

which is < ∞ by the choice of ρ . Hence, the series defining dk converges absolutely, proving (i).

Next, we take a look at (ii). As the power series

∞

∑
k=0

|dk|(ρ −|a|)k is finite,

then the power series g(z) converges normally on the compact set B(a,ρ −|a|) so it has a radius of convergence
r with r ≥ ρ −|a| for any |a|< ρ < R. As such, r ≥ R−|a|, which is positive. This proves (ii).
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Lastly, we prove (iii). For all z ∈ B(0,R)∩B(a,r), we have

f (z) =
∞

∑
n=0

cnzn =
∞

∑
n=0

cn (a+ z−a)n

=
∞

∑
n=0

cn

[
n

∑
k=0

(
n
k

)
an−k (z−a)k

]
by the biomial theorem

=
∞

∑
k=0

(
∞

∑
n=k

(
n
k

)
cnan−k

)
(z−a)k

= g(z)

and the result follows.

Definition 2.9 (convolution of series). Let

∑
n∈Z

an and ∑
n∈Z

bn be two series in C indexed by Z.

Their convolution is the double series

∑
n∈Z

cn defined by for all n ∈ Z we have cn = ∑
k,l∈Z
k+l=n

akbl = ∑
k∈Z

akbn−k.

In Definition 2.9, we can also write

∑
k+l=n

akbl in place of ∑
k,l∈Z
k+l=n

akbl.

Proposition 2.7 (convolution). Suppose

∑
n∈Z

an and ∑
n∈Z

bn are absolutely convergent series in C.

Also, we define

cn = ∑
k,l∈Z
k+l=n

akbl.

Then, the following hold:
(i) For all n ∈ Z, the series cn converges absolutely in C

(ii) The series ∑
n∈Z

cn converges absolutely in C

(iii) We have (
∑
n∈Z

an

)(
∑
n∈Z

bn

)
= ∑

n∈Z
cn = ∑

n∈Z
∑

k,l∈Z
k+l=n

akbl in C

Proof. We first prove (i). Consider the double series

∑
n∈Z

∑
k,l∈Z
k+l=n

|ak| |bl|= ∑
(k,l)∈Z×Z

|ak| |bl|= ∑
k∈Z

(
∑
l∈Z

|ak| |bl|
)

=

(
∑
k∈Z

|ak|
)(

∑
l∈Z

|bl|
)
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which is the product of two series with finite value. Hence, cn converges absolutely in C. This proves (i). As a
consequence, (ii) follows from the triangle inequality for series (see it as an application of Corollary 1.2).

To prove (iii), we start with the RHS. So,

∑
n∈Z

∑
k,l∈Z
k+l=n

akbl = ∑
(k,l)∈Z×Z

akbl = ∑
k∈Z

(
∑
l∈Z

akbl

)
=

(
∑
k∈Z

ak

)(
∑
l∈Z

bl

)
.

Since k and l are dummy variables, the result follows.

Theorem 2.4 (C-differentiability of analytic functions). Let a ∈ C and

f (z) =
∞

∑
n=0

an (z−a)n be a power series with strictly positive radius of convergence R.

Then, the following hold:
(i) The termwise differentiated power series

∞

∑
n=1

nan (z−a)n−1 has the same radius of convergence R

(ii) The C-valued function f : B(a,R) → C represented by the power series is C-differentiable on
B(a,R)

(iii) The C-derivative f ′ : B(a,R) is represented by the power series

g(z) =
∞

∑
n=1

nan (z−a)n−1

We will only prove (i) as the proofs of (ii) and (iii) are pretty long.

Proof. Without loss of generality, we may assume that a = 0 throughout the proof. For (i), by the Cauchy-
Hadamard formula (Proposition 2.4), it suffices to show that

limsup
n→∞

(n · |an|)1/(n−1) = limsup
n→∞

|an|1/n .

We will prove that

lim
n→∞

(n+1)1/n = 1.

For n ≥ 1, we can write (n+1)1/n = 1+δn for some δn > 0. Then,

n+1 = (1+δn)
n = 1+nδn +

n(n−1)
2

δ
2
n + . . .+δ

n
n

> 1+
n(n−1)

2
δ

2
n when n ≥ 2

so

δ
2
n <

2
n−1

which implies lim
n→∞

δ
2
n = 0.

This proves (i).
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For any open set U ⊆ C, we let

Cω (U) denote the set of analytic functions on U and

C∞ (U) denote the set of smooth functions on U

We note that Cω (U)⊆ C∞ (U), i.e. analytic functions are smooth, with derivatives of all orders.

Corollary 2.2 (Taylor’s theorem). Let U ⊆ C be an open set and f ∈ Cω (U) be an analytic function
on U . Let a ∈U and

∞

∑
n=0

an (z−a)n be a power series with positive radius of convergence.

Then, for all n ∈ N, we have

an =
1
n!

f (n) (a) in C.

In particular, the power series

∞

∑
n=0

f (n) (a)
n!

(z−a)n must have positive radius of convergence.

Corollary 2.3 (uniqueness of power series). If two power series with the same centre a converge to the
same function on a disc of positive radius centred at a, then the two power series are the same, i.e. have
the same coefficients.

Definition 2.10 (entire function). A function f which is analytic on the whole of C is entire.

Proposition 2.8. If f is an entire function, then f has a power series expansion

f (z) =
∞

∑
n=0

anzn with infinite radius of convergence.

Example 2.9. Let

f (z) = x3 −3xy2 + x2 − y2 + x+1+ i(3x2y− y3 +2xy+ y).

(a) Show that f (z) is entire.
(b) Express f (z) as a function of z.

Solution.

(a) This is a very simple exercise using the CR equations.
(b) Recall the binomial theorem and see that

f (z) = x3 −3xy2 + i
(
3x2y− y3)+ x2 − y2 + x+1+ i(2xy+ y)

= x3 −3xy2 + i
(
3x2y− y3)+ x2 − y2 +2ixy+ x+ iy+1

= (x+ iy)3 +(x+ iy)2 + x+ iy+1

= z3 + z2 + z+1

So, f (z) = z3 + z2 + z+1.
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Example 2.10. Find an entire function f such that Re( f ) = x2 − 3x− y2 or explain why there is no such
function.

Solution. Write f = u+ iv, where u and v are real-valued functions. Given that u = x2 −3x− y2, we apply the
CR equations

∂u
∂x

=
∂v
∂y

= 2x−3 and
∂u
∂y

=−∂v
∂x

=−2y.

Solving the first equation yields v= 2xy+g(y), where g(y) is a function in terms of y. Then, 2x+g′(y) = 2x−3,
which implies that g(y) =−3y+ c for some constant c.

Now, we have v = 2xy−3y+ c. We conclude that the following function satisfies the hypotheses:

f (z) = x2 −3x− y2 + i(2xy−3y+ c)

= x2 − y2 +2ixy−3x−3iy+ ic

= z2 −3z+ ci

So, f (z) = z2 −3z+ ci. □

Example 2.11 (Dinh’s 70 problems). Let f : C→ C be an entire function such that

f (0) = f ′ (0) = 0 and Re
(

f ′
)
= x2 − y2 +6xy.

Find f .

Solution. Let z = x+ iy, so z2 = x2 − y2 +2xyi. As such,

x2 − y2 +6xy = Re
(
z2 −3iz2)

Since f ′ (0) = 0, then f ′(z) = z2 −3iz2. It follows that f (z) = z3/3− iz3 as f (0) = 0. □

Definition 2.11 (zero). Let Ω ⊆ C be an open set and let f : Ω → C be a holomorphic function on Ω.
For any point a ∈ Ω and any m ∈ Z≥0, we say that a is a zero of f of multiplicity m if and only if there
exists

a holomorphic function g : Ω→C with g(a) ̸= 0 such that for all z∈Ω we have f (z)= (z−a)m g(z) .

Theorem 2.5. Let Ω ⊆ C be a connected open set and let f : Ω → C be a holomorphic function on Ω.
Then, the following are equivalent:

(i) f is identically 0 as a function;
(ii) There exists a point a ∈ Ω such that for all n ∈ Z≥0, one has f (n) (a) = 0;

(iii) The set f−1 (0) = {z ∈ G : f (z) = 0} of zeros of f has a limit point in Ω

Proof. We first note that (i) implies (ii) and (i) implies (iii) are obvious. We then prove (iii) implies (ii). By (iii),
there exists a limit point a ∈ Ω of f−1 (0). Suppose on the contrary that (ii) does not hold. Then, there exists
n ∈ Z≥0 such that

f (a) = f ′ (a) = . . .= f (n−1) (a) = 0 and f (n) (a) ̸= 0.
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Since f−1 (0) is a closed set, we must have a ∈ f−1 (0) so f (a) = 0. As Ω is open, then there exists R > 0 such
that B(a,R)⊆ Ω. Expanding f in a power series about a yields

f (z) =
∞

∑
k=n

ak (z−a)k for z ∈ B(a,R) .

Define

g(z) =
∞

∑
k=n

ak (z−a)k−n for z ∈ B(a,R) .

Then, f (z) = (z−a)n g(z) as holomorphic functions on B(a,R) and g(a) = an ̸= 0. By continuity of g, there
exists 0 < r < R such that g(z) ̸= 0 for all z ∈ B(a,r). Then, for all z ∈ B(a,r) \ {a}, one has f (z) ̸= 0. This
implies that

f−1 (0)∩B(a,r) = {a} ,

i.e. a is an isolated point in f−1 (0), contradicting the hypothesis that a is a limit point of f−1 (0).

Lastly, we prove (ii) implies (i). Let

A =
{

z ∈ Ω : f (n) (z) = 0 for all n ∈ Z≥0

}
=

⋂
n∈Z≥0

(
f (n)
)−1

(0) .

By (ii), A ̸= /0 is closed in Ω. We will prove that A is open in Ω. Thereafter, using the fact that Ω is connected,
this would imply A = Ω and hence, f ≡ 0 (i.e. f is identically 0).

For any a ∈ A ⊆ Ω, there exists R > 0 such that B(a,R)⊆ Ω. Expanding f as a power series about a yields

f (z) =
∞

∑
n=0

an (z−a)n as a holomorphic function on B(a,R) ,

where for each n ≥ 0, we have

an =
f (n) (a)

n!
= 0

as a ∈ A. Hence, B(a,R)⊆ A, implying that A is open in Ω.

Theorem 2.6 (identity theorem). Let Ω ⊆ C be a connected open set and let f ,g : Ω → C be
holomorphic functions on Ω. Then,

f = g if and only if {z ∈ Ω : f (z) = g(z)} has a limit point in Ω.

Example 2.12. Does there exist an entire function with the property that for n ∈ N,

f
(

1
n

)
=

n4

1+n4 ?

Solution. Replacing n with 1/z, we consider the function

g(z) =
1

z4 +1
.

Note that the roots of the equation z4 +1 = 0 can be found as follows. As z4 =−1 = eiπ+2kπi, then

z = exp
(

iπ · 2k+1
4

)
,
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where k = 0,1,2,3. We denote the roots by pn, where 0 ≤ n ≤ 3. Obviously, g(z) is holomorphic outside
the 4 points pn. By our hypothesis, f (z) = g(z) for z = 1,1/2,1/3, . . . and both f and g are defined on
Ω = C \ {p0, p1, p2, p3}. The sequence 1,1/2,1/3, . . . converges to 0 which is inside Ω, so this sequence is
not discrete in Ω. We conclude that f = g in Ω by the identity theorem.

On the other hand, the function f is entire and bounded near pn but g is not bounded near these points. We
have obtained a contradiction so such a function f does not exist. □

Example 2.13. Do there exist functions f and g that are holomorphic at z = 0 and that satisfy
(a) f (1/n) = f (−1/n) = 1/n2, where n ∈ N;
(b) g(1/n) = g(−1/n) = 1/n3, where n ∈ N?

Solution.
(a) Yes, f (z) = z2.
(b) We prove that such a function g does not exist in a neighbourhood of 0. Suppose on the contrary

that g exists. Define h(z) = z3 and l(z) = −z3. We have g(z) = h(z) on a non-discrete sequence
z= 1,1/2,1/3, . . . which converges to 0, and 0 is in the domain of g. By the identity theorem, g(z) = h(z).
In a similar fashion, by considering the sequence z =−1,−1/2,−1/3, . . ., we obtain g(z) = l(z). Hence,
h(z) = l(z), implying that z3 =−z3, so z3 = 0. However, this is a contradiction.

Example 2.14. Show that there is no holomorphic function f in C such that

f
(

1
n

)
=

ne−2/n

n+1
for all n ∈ N.

Solution. Suppose on the contrary that such a function exists. Consider

g(z) =
e−2z

z+1
.

This function is defined for all z ∈ C except at z = −1. By the hypothesis, this function is equal to f on the
sequence 1/n which is not discrete on C\{−1} and so, f = g on C\{−1}. However, this is a contradiction. □

Corollary 2.4 (finite multiplicity). Let Ω ⊆ C be a connected open set and let f : Ω → C be a non-
zero holomorphic function on Ω. For any point a ∈ Ω, there exists n ∈ Z≥0 and a holomorphic function
g : Ω → C with g(a) ̸= 0 such that for all z ∈ Ω, one has

f (z) = (z−a)n g(z) .

Corollary 2.5 (discreteness of zeros). Let Ω ⊆ C be a connected open set and let f : Ω → C be a
holomorphic function on Ω. If f is non-constant, then the set f−1 (0) = {z ∈ Ω : f (z) = 0} of zeros of f
is a discrete subset of Ω, i.e. for any point a ∈ Ω such that f (a) = 0,

there exists R > 0 such that B(a,R)⊆ Ω and f−1 (0)∩B(a,R) = {a} .

2.4
The Exponential Function

Recall from Real Analysis (MA2108) that e can be defined to be the following infinite series:

e =
∞

∑
n=0

1
n!
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This can be deduced from the Maclaurin expansion of ex, which is

ex =
∞

∑
n=0

xn

n!
which has radius of convergence R = ∞.

Definition 2.12 (complex exponential function). The complex exponential function is the function
exp : C→ C defined by the power series

exp(x) =
∞

∑
n=0

xn

n!
.

By the ratio test, the power series representing the complex exponential function converges absolutely for
all z ∈ C, which implies that the radius of convergence R is ∞. This implies

limsup
n→∞

n

√
1
n!

= 0.

Alternatively, one can directly deduce the value of this limsup using Stirling’s formula, which states that

lim
n→∞

n!√
2πn(n/e)n or the alternative asymptotic relation n! ∼

√
2nπ

(n
e

)n
.

Proposition 2.9. For any z,w ∈ C, we have

exp(z+w) = exp(z) · exp(w) in C.

Proof. The power seires for exp(z) and exp(w) converge absolutely, so by Proposition 2.7 (an important
proposition on convolution), we have the following:

(i) For all n ∈ Z≥0, the series

cn = ∑
k,ℓ∈Z≥0
k+ℓ=n

zk

k!
· wℓ

ℓ!
converges absolutely in C

(ii) The series

∑
n∈Z≥0

cn = ∑
n∈Z

(z+w)n

n!
converges in C

(iii) One has exp(z) · exp(w) = exp(z+w) in C
By considering (iii), we see that the result follows.

From the lens of Group Theory, we say that the complex exponential function exp : C→C× is a continuous
group homomorphism from

the additive group C to the multiplicative group C× = C\{0} .

To see why, we have exp(0) = 00/0! = 1. Then, for all z ∈ C, we have

1 = exp(0) = exp(z) · exp(−z) so exp(z) ∈ C×.

Proposition 2.9 shows that exp is a group homomorphism from C to C×. Since exp is a function defined by a
convergent power series, we conclude that it is continuous.
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Remark 2.3. C= R× iR as groups.

Theorem 2.7. exp restricts to an isomorphism exp : R→ R×
>0.

Proof. It is clear from the power series definition that exp : R→ R. Also, note that

exp : R→ C×∩R= R× = R×
>0 ⊔R<0.

Since exp is continuous and R is connected, we must have exp(R) being connected in R×, where exp(R) ⊆
R×
>0. For x ∈R≥0, we have exp(x)≥ 1+x is not bounded above so [1,∞)⊆ exp(R) and ker(exp)∩R≥0 = {0}.

Then from exp(−x) = [exp(x)]−1, we have (0,1]⊆ exp(R) and ker(exp)∩R≥0 = {0}.

Lemma 2.2. For z ∈ C, we have exp(z) = exp(z).

Proof. We note that

exp(z) =
∞

∑
n=0

(z)n

n!
=

∞

∑
n=0

zn

n!
= exp(z).

Definition 2.13 (circle group). Let

T=
{

z ∈ C× : |z|C = 1
}
≤ C× denote the circle group.

Proposition 2.10. For any t ∈R, we have |exp(it)|C = 1. In other words, exp maps iR⊆C into T⊆C×.

Proof. We have

|exp(it)|2C = exp(it)exp(it)

= exp(it)exp
(
it
)

by Lemma 2.2

= exp(it)exp(−it)

which is equal to exp0 = 1.

Corollary 2.6. For any z ∈ C, we have

|exp(z)|C = exp(Re(z)) in R>0.

Proof. We have z = Re(z)+ i Im(z) implies exp(z) = exp(Re(z)) · exp(i Im(z)).

Theorem 2.8. For any z ∈ C, we have

exp(z) ∈ T if and only if z ∈ iR.

Proof. We have exp(z) ∈ T if and only if exp(Re(z)) = 1, or equivalently Re(z) = 0.
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For this set of notes, we let

D= B(0,1) = {z ∈ C : |z|< 1}

denote the open unit ball centred at 0 in C.

Definition 2.14 (logarithmic function). The logarithmic series λ : D→ C is the power series

log(1+ z) = λ (z) =
∞

∑
n=1

(−1)n−1 · zn

n!
= z− z2

2
+

z3

3
+ . . .

Proposition 2.11. For any z ∈ D, one has exp(λ (z)) = 1+ z.

Lemma 2.3. The series defining λ (z) has radius of convergence 1.

Proof. As z ∈ D (open unit disc centred at 0), the series converges absolutely by the ratio test, i.e.∣∣∣∣zn+1/(n+1)
zn/n

∣∣∣∣= n
n+1

|z| which is < 1.

Theorem 2.9. The function exp : C→ C× is surjective.

Theorem 2.10. ker(exp)⊆ C is a non-trivial, discrete subgroup contained in iR⊆ C.

Proof. By surjectivity (Theorem 2.9), there exists z ∈ C such that exp(z) = −1 in C×. Then, z ̸= 0 in C since
exp(0) = 1 ̸=−1 so 2z ̸= 0 in C. However,

exp(2z) = exp(z+ z) = [exp(z)]2 = (−1)2 = 1

so ker(exp) is a non-trivial subgroup of C.

We then prove that ker(exp) is contained in iR. Note that

ker(exp) = {z ∈ C : exp(z) = 1}

⊆ {z ∈ C : |exp(z)|C = 1}

which is equal to exp−1 (T) = iR.

Lastly, we prove that ker(exp) is a discrete subgroup of C. Note that for z ∈ C\{0}, we have the following†:

exp(z)−1
z

=
1
z

∞

∑
n=1

zn

n!
=

∞

∑
n=0

zn

(n+1)!
so lim

z→0

exp(z)−1
z

= 1

Thus, the function

g : C→ C where g(z) =


exp(z)−1

z
if z ̸= 0;

1 if z = 0
is continuous.

†Here is an interesting fact: the function x/(ex −1) appears in the definition of Bernoulli numbers. This pops up in Combinatorics and
Analytic Number Theory.
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As such, there exists an open subset U ⊆C with 0 ∈U such that 0 ̸∈ g(U). Equivalently, g−1 (0)∩U ̸= /0. Then,
for all z ∈ U , exp(z) = 1 if and only if z = 0, so ker(exp)∩U = {0}. As such, for all w ∈ ker(exp), we have
ker(exp)∩ (w+U) = {w}, so every point in ker(exp) is isolated.

Now, we will define π!

Definition 2.15. We define π to be the following:

π = inf{t ∈ R>0 : exp(2it) = 1}

= inf
{

1
2i

ker(exp)∩R>0

}

In Theorem 2.10, we mentioned that

1
2π

ker(exp)∩R>0 is non-empty and discrete.

As such, π is a positive real number!

Proposition 2.12. ker(exp) = 2πiZ⊆ iR

Proof. The reverse inclusion ⊇ is obvious. For the forward inclusion, suppose z ∈ ker(exp). Then, write

z = 2iπ (nπ + t) where n ∈ Z,0 ≤ t < π.

So, exp(2it) = 1 and the result follows.

Corollary 2.7 (Euler’s identity). eπi +1 = 0

Proof. Note that w = eπi in C satisfies w2 = e2πi = 1. So, w = ±1 in C. Since πi ̸∈ 2πiZ, then w ̸= 1, so
w =−1.

Theorem 2.11 (de Moivre’s theorem). For n ∈ Z,

(cosθ + isinθ)n = cosnθ + isinθ .

Proof. By Euler’s formula, eiθ = cosθ + isinθ . In de Moivre’s theorem, the left side of the equation is einθ by
raising both sides to the power of n. The result follows by using Euler’s formula on einθ .

Definition 2.16 (topological group). A topological group is a group G equipped with a topology such
that we have the following:

(i) G is a topological space
(ii) The group operation · : G×G→G, given by (g,h) 7→ g ·h, is continuous with respect to the product

topology on G×G
(iii) The inverse function (·)−1 : G → G given by g 7→ g−1 is continuous

In summary

exp : C→ C× is a continuous, surjective homomorphism of topological groups (Definition 2.16).
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Its kernel is ker(exp) = 2πiZ⊆ C. Hence, it induces an isomorphism of topological groups

C/2πiZ ∼−→ C× where z+2πiZ 7→ ez.

Restricting to the real axis yields
R ∼−→ R>0 where x 7→ ex,

while restricting to purely imaginary parts modulo 2πi yields

iR/2πiZ ∼−→ T where iy+2πiZ 7→ eiy.

Using polar coordinates, we obtain an isomorphism

R>0 ×T ∼−→ C×, (r,θ) 7→ rθ whose inverse is z 7→
(
|z| , z

|z|

)
.

On the additive side, we note that

R⊕ iR∼= C which is given by the map (x, iy) 7→ x+ iy.

2.5
Harmonic Functions

Definition 2.17 (harmonic function). A real-valued function h(x,y) is said to be harmonic if it is twice
continuously differentiable and satisfies Laplace’s equation. That is,

hxx +hyy = 0 or
∂ 2h
∂x2 +

∂ 2h
∂y2 = 0.

Example 2.15. Show that u2 cannot be harmonic for any non-constant harmonic function u.

Solution. Let u be a non-constant harmonic function. Then,

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0.

Also, we have
∂ 2
(
u2
)

∂x2 = 2u
∂ 2u
∂x2 +2

(
∂u
∂x

)2

and
∂ 2
(
u2
)

∂y2 = 2u
∂ 2u
∂y2 +2

(
∂u
∂y

)2

.

However,

∂ 2
(
u2
)

∂x2 +
∂ 2
(
u2
)

∂y2 = 2u
∂ 2u
∂x2 +2

(
∂u
∂x

)2

+2u
∂ 2u
∂y2 +2

(
∂u
∂y

)2

= 2
(

∂u
∂x

)2

+2
(

∂u
∂y

)2

̸= 0,

which concludes the proof. □

Definition 2.18 (harmonic conjugate). Let u be a harmonic function. If v is a harmonic function
satisfying the Cauchy-Riemann equations, then v is a harmonic conjugate of u.

Example 2.16 (MA5217 AY24/25 Sem 1 Homework 1). Show that the function

u(x,y) = ex−y cos(x+ y)+ ex+y cos(x− y)

is harmonic in C and find a harmonic conjugate of u.
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Solution. By definition, we need to show that u satisfies Laplace’s equation, i.e.

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0.

Let s = x+ y and t = x− y, so

u
(

s+ t
2

,
s− t

2

)
= et coss+ es cos t

Hence,

∂ 2u
∂ s2 +

∂ 2u
∂ t2 = es cos t − et coss+ et coss− es cos t = 0

so u is harmonic. Finding a harmonic conjugate is trivial. □

Example 2.17 (Dinh’s 70 problems). Find all harmonic functions u(x,y) in C such that(
x2 − y2)u(x,y) is harmonic in C.

Solution. Let f (x,y) = (x2 − y2)u(x,y). Then,

fxx = (x2 − y2)uxx +4xux +2u and fyy = (x2 − y2)uyy −4yuy −2u.

As such,

fxx + fyy = 4(xux − yuy),

where we used the fact that u is harmonic (i.e. uxx + uyy = 0). For f to be harmonic, xux = yuy. One can
use techniques taught to solve partial differential equations to deduce that u(x,y) = g(xy), where g : R → R.
Therefore, g′′(xy) = 0, so g(t) = at +b, where a,b ∈ R. Hence, u(x,y) = axy+b. □
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Chapter 3
Complex Integration

3.1
Riemann-Stieltjes Integrals

In this section, we are interested in integration over paths in C.

Definition 3.1 (continuous map). Let X be a Euclidean space (take for example X =C) and let [a,b]⊆
R be a compact interval. A piecewise-C1 path in X parametrized by [a,b] such as a contour, arc, etc. is a
continuous map γ : [a,b]→ X such that there exists a partition P = {a = t0 < t1 < .. . < tm = b} of [a,b]
and for all 1 ≤ j ≤ m, the map

γ |[t j−1,t j]: [t j−1, t j]→ X is continuously differentiable, i.e. C1.

What Definition 3.1 really means is that γ ′ exists no (t j−1, t j) and is continuous, and both the limits

lim
t→t+j−1

γ
′ (t) and lim

t→t−j
γ
′ (t) exist in X .

Definition 3.2 (closed path). A path γ in X is closed if and only if γ (a) = γ (b) in X , where

γ (a) is the initial point and γ (b) is the endpoint.

Definition 3.3 (variation). For any map γ : [a,b] → X and any partition (necessarily finite) P =

{a = t0 < t1 < .. . < tm = b} of [a,b], define

v(γ;P) =
m

∑
k=1

|γ (tk)− γ (tk−1)| in R≥0 to be the variation of γ with respect to P.

Set

V (γ) = sup{v(γ;P) : P a partition of [a,b]} in R≥0 ∪{∞} to be the total variation of γ.

Definition 3.4 (rectifiable path). A path γ is said to be rectifiable or a function of bounded variation
if and only if V (γ)< ∞.

Theorem 3.1 (fundamental theorem of line integrals). Suppose C is a smooth curve given by z(t) :
a ≤ z ≤ b and F ′ (z) = f (z). Then,∫

C
f (z) dz = F (z(b))−F (z(a)) .
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Lemma 3.1 (triangle inequality). Suppose f is a continuous complex-valued function of t. Then,∣∣∣∣∫ b

a
f (t) dt

∣∣∣∣≤ ∫ b

a
| f (t)| dt.

Proposition 3.1. If γ : [a,b]→ C is piecewise C1, then γ is of bounded variation and

V (γ) =
∫ b

a

∣∣γ ′ (t)∣∣ dt.

In other words, the length of γ is equal to V (γ).

Proof. We assume that γ is C1. Let P = {a = t0 < t1 < .. . < tm = b} be any partition of [a,b]. Then, for each
1 ≤ k ≤ m, we have

|γ (tk)− γ (tk−1)|=
∣∣∣∣∫ tk

tk−1

γ
′ (t) dt

∣∣∣∣ by the Fundamental Theorem of Calculus (Theorem 3.1)

≤
∫ tk

tk−1

∣∣γ ′ (t) dt
∣∣ by the triangle inequality (Lemma 3.1)

As such,

v(γ;P) =
m

∑
k=1

|γ (tk)− γ (tk−1)| ≤
m

∑
k=1

∫ tk

tk−1

∣∣γ ′ (t)∣∣ dt =
∫ b

a

∣∣γ ′ (t)∣∣ dt.

This implies V (t) is bounded by the integral on the RHS, which is finite. Hence, γ is of bounded variation. We
then show that ∫ b

a

∣∣γ ′ (t)∣∣ dt ≤V (γ) = sup
P

v(γ;P) in R≥0.

It suffices to show that for any ε > 0, there exists a partition P of [a,b] such that∫ b

a

∣∣γ ′ (t)∣∣ dt − ε · constant < v(γ;P) .

Let ε > 0 be arbitrary. Since γ is C1 on [a,b], a compact interval, then γ ′ is uniformly continuous on [a,b]. As
such, there exists δ > 0 such that for any s, t ∈ [a,b] with |s− t| < δ , we have |γ ′ (s)− γ ′ (t)| < ε . We choose
any partition P = {a = t0 < t1 < .. . < tm = b} such that

∥P∥= max{(tk − tk−1) : 1 ≤ k ≤ m} is < δ .

Then, for all tk−1 ≤ t ≤ tk, one has∣∣γ ′ (t)− γ
′ (tk)

∣∣< ε so
∣∣γ ′ (t)∣∣≤ ∣∣γ ′ (tk)∣∣+ ε.

Hence,∫ tk

tk−1

∣∣γ ′ (t)∣∣ dt ≤
∣∣γ ′ (tk)∣∣(tk − tk−1)+ ε (tk − tk−1)

=

∣∣∣∣∫ tk

tk−1

(
γ
′ (t)−

(
γ
′ (t)− γ

′ (tk)
))

dt
∣∣∣∣+ ε (tk − tk−1)

≤
∣∣∣∣∫ tk

tk−1

γ
′ (t) dt

∣∣∣∣+∫ tk

tk−1

∣∣γ ′ (t)− γ
′ (tk)

∣∣ dt + ε (tk − tk−1) by the triangle inequality (Lemma 3.1)

≤
∣∣γ ′ (tk)− γ (tk−1)

∣∣+2ε (tk − tk−1)
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Hence, ∫ b

a

∣∣γ ′ (t)∣∣ dt ≤ v(γ; ¶)+2ε (b−a)

so the result follows.

Example 3.1 (line segment in C). For any w,z ∈ C, the line segment [w,z]⊆ C parametrized by

γ : [0,1]→ C where γ (t) = w+ t (z−w) is rectifiable.

Its length is

V (γ) =
∫ 1

0

∣∣γ ′ (t)∣∣ dt = |z−w|(1−0) = |z−w| .

Example 3.2 (circles in C). For any a ∈ C and r ∈ R>0, the circle C (a,r) = ∂B(a,r) parametrized by

γ : [0,2π]→ C where γ (t) = a+ reit is rectifiable.

Its length is

v(γ) =
∫ 2π

0

∣∣γ ′ (t)∣∣ dt =
∣∣rieit

∣∣(2π −0) = 2πr.

In layman’s terms, we say that the circumference of a circle of radius a (with an arbitrary centre) is 2πr.

Example 3.3 (space-filling curves). A continuous space-filling curve is continuous but not rectifiable. A
space-filling curve is a continuous mapping from a one-dimensional interval (often [0,1]) onto a higher-
dimensional region (for example, the unit square [0,1] × [0,1]). Such curves are famous because they
challenge our usual intuition that a 1-dimensional object cannot fill up an area (2-dimensional) or volume
(3-dimensional).

A non-rectifiable curve is one that has infinite total length by this definition. For example, consider the Hilbert
curve in Figure 1. In other words, if one tries to approximate the curve by successively finer polygonal chains,
the total length of those polygonal approximations grows without bound.

Figure 1: Hilbert curve

Definition 3.5. Let γ : [a,b]→C be a piecewise C1 path and let f : [a,b]→C be a continuous function
on [a,b]. We set ∫ b

a
f dγ =

∫ b

a
f (t)γ

′ (t) dt in C.
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Definition 3.6 (path integral). Let γ : [a,b]→ C be a piecewise smooth path and let f : {γ}→ C be a
continuous function on the trace of γ . The path integral of f along γ is∫

γ

f (z) dz =
∫ b

a
f (γ (t)) dγ =

∫ b

a
f (γ (t))γ

′ (t) dt.

Example 3.4. For any w,z ∈ C, parameterized the line segment [w,z]⊆ C by

γ : [0,1]→ C where γ (t) = w+ t (z−w) .

Then, for any n ∈ Z≥0, we have∫
γ

zn dz =
∫ 1

0
(w+ t (z−w))n (z−w) dt =

zn+1 −wn+1

n+1
.

Example 3.5. For any r ∈ R>0, parameterize the circle C (0,r)⊆ C as follows:

γ : [0,2π]→ C where γ (t) = reit

Then, for any n ∈ Z, we have∫
γ

zn dz =
∫ 2π

0

(
reit)n · ireit dt = irn+1

∫ 2π

0
ei(n+1)t dt,

which is equal to 0 is n ̸=−1; 2πi if n =−1.

Proposition 3.2 (reparametrization of paths). Let

γ : [a,b]→ C be a piecewise C1 path and

ϕ : [c,d]→ [a,b] be a C1 bijection with ϕ
′ (s) for all s ∈ [c,d]

Then, γ ◦ϕ : [c,d]→ C is also a piecewise C1 path and for any continuous function f : {γ} → C on the
trace of γ , we have ∫

γ

f dz =
∫

γ◦ϕ

f dz.

Proof. It is clear that γ ◦ϕ is a piecewise C1 path. Thus, we have∫
γ◦ϕ

f dz =
∫ d

c
f ((γ ◦ϕ)(s)) · (γ ◦ϕ)′ (s) ds by definition

=
∫ d

c
f (γ (ϕ (s))) · γ ′ (ϕ (s)) ·ϕ ′ (s) ds by the chain rule

=
∫ b

a
f (γ (t)) · γ ′ (t) dt by performing a change of variables t = ϕ (s)

=
∫

γ

f dz by definition

So, the result follows.

Definition 3.7 (equivalent paths). Let

σ : [c,d]→ C andγ : [a,b]→ C be piecewise C1 paths.
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We say that the path σ is equivalent to γ if there exists a function

ϕ : [c,d]→ [a,b] which is C1, strictly increasing, and with ϕ (c) = a and ϕ (d) = b

such that σ = γ ◦ϕ . We call the function ϕ a change of parameter.

Proposition 3.3. Let

γ : [a,b]→ C be a piecewise C1 path and

f ,g : {γ}→ C be continuous functions on the trace of γ

Then, the following hold:
(i) Linearity with respect to integrand: For any α,β ∈ C, we have∫

γ

α f +βg dz = α

∫
γ

f dz+β

∫
γ

g dz

(ii) Reverse orientation of path: We have∫
−γ

f dz =−
∫

γ

f dz

(iii) Translation of path: For any c ∈ C, we have∫
γ+c

f (z) dz =
∫

f (z+ c) dz

Lemma 3.2 (ML inequality/estimation lemma). Let

γ : [a,b]→ C be a piecewise C1 path and

f : {γ}→ C be continuous functions on the trace of γ

Then, ∣∣∣∣∫
γ

f dz
∣∣∣∣≤ ML.

Here,

M = sup
z∈{γ}

| f (z)| denotes the supremum norm of f on {γ} and

L =V (γ) denotes the length of γ

Proof. We have ∣∣∣∣∫
γ

f dz
∣∣∣∣≤ ∣∣∣∣∫ b

a
f (γ (t)) · γ ′ (t) dt

∣∣∣∣≤ ∫ b

a
| f (γ (t))|

∣∣γ ′ (t)∣∣ dt ≤ ML.

Theorem 3.2 (analogue of the Fundamental Theorem of Calculus). Let Ω be an open subset of C
and let γ be a piecewise C1 path in Ω with initial and endpoints α and β respectively. If

f : Ω → C is a continuous function with primitive F : Ω → C then
∫

γ

f dz = F (β )−F (α) .
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Note that F is said to be a primitive/antiderivative of f when F ′ = f . This notation yields what is known
as the holomorphic derivative.

Proposition 3.4 (path independence). Let Ω ⊆ C be an open set. For any piecewise C1 path γ in Ω,
the path integral ∫

γ

f dz depends only on the endpoints of γ.

That is to say, if γ and γ0 have the same endpoints,∫
γ

f dz =
∫

γ0

f dz.

Corollary 3.1. If γ is a closed curve in Ω and f : Ω → C is continuous, then∫
γ

f dz = 0.

Example 3.6. Let γ be the contour given by γ(t) = 3eit , where 0 ≤ t ≤ π . Prove that∣∣∣∣∣
∫

γ

zeiz

z2 −11z+30
dz

∣∣∣∣∣≤ 5.

Solution. Obviously, L = 3π since γ(t) = 3eit , where 0 ≤ t ≤ π is the equation of the upper half of a circle of
radius 3 centred at the origin, so its arc length is 3π . Now, we need to justify that M ≤ 5/3π . Let z = x+ iy.

We have ∣∣∣∣∣ zeiz

z2 −11z+30

∣∣∣∣∣=
∣∣∣∣∣ z · eiz

(z−5)(z−6)

∣∣∣∣∣= |z|e−y

|z−5| |z−6|
=

|z|e−y

|z−5| |z−6|
.

Since |z| ≤ 3 and applying the triangle inequality, we see that

|z|e−y

|z−5| |z−6|
≤ 3 ·1

||z|−5| ||z|−6|
≤ 3

|3−5| |3−6|
=

1
2

so M = 1/2. It is clear that 1/2 < 5/3π so we conclude that M ≤ 5/3π . □

3.2
Some Results in Topology

Definition 3.8 (star-shaped set). A set S is star-shaped if it has a point s, known as the star centre, so
that for each z ∈ S, the segment [s,z] lies in S.

s z
[s,z]

S
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Remark 3.1. A star domain is not necessarily convex.

Example 3.7. A cross-shaped figure is a star domain but is not convex.

Theorem 3.3. Let S be an open star-shaped region and f continuous on S. Let T be a closed triangular
region and ∂T be the boundary of the triangle traversed in the anticlockwise direction. Suppose∫

∂T
f (z) dz = 0

for every T in S, then f has an antiderivative, F , in S.

Definition 3.9 (boundary point). A point w ∈ C is a boundary point of S if

for every r ∈ R+ we have Br (w)∩S ̸= /0.

Definition 3.10 (closure). Denote the set of boundary points by ∂S. Given a set S, the closure of S,
denoted by S, is defined by

S = S∪∂S.

Theorem 3.4. A set G is closed if and only if G = G.

Proof. For the forward direction, suppose G is closed. We wish to prove that G = G∪ ∂G, or equivalently,
∂G ⊆ G. Suppose on the contrary that ∂G ̸⊆ G. Then, there exists w ∈ ∂G\G. For every ε > 0, we have

Bε (w)∩G ̸= /0 and Bε (w)∩G′ ̸= /0 which implies Bε (w)∩G ̸= /0.

However, w ̸∈ G, so w ∈ G′. As G is closed, then G′ is open, so there exists ε ′ > 0 such that B(w,ε ′) ⊆ G′.
Hence, B(w,ε ′)∩G = /0 and this is a contradiction, so ∂G ⊆ G.

We then prove the reverse direction. Suppose G = G∪ ∂G. We wish to prove that G′ is open. Let x ∈ G′.
As ∂G ⊆ G, then G′∩∂G = /0. There exists ε > 0 such that B(x,ε)∩G = /0 or B(x,ε)∩G = /0. As x ∈ G′, then
B(x,ε)∩G′ ̸= /0. Therefore, B(x,ε)∩G = /0 or B(x,ε)⊆ G′, which is the definition of G′ being open.

Definition 3.11 (accumulation point). A point z0 is an accumulation point of a set S if each
neighbourhood of z0 contains at least one point of S distinct from z0.

Remark 3.2. The accumulation point of a set S does not have to be an element of that set.

Proposition 3.5. A set S is closed if and only if S contains all its accumulation points.

Proof. For the forward direction, we proceed with contradiction. Let y be an accumulation of S which is not
in S. Then, y ∈ S′. As S′ is an open set, there exists δ > 0 such that Bδ (y) ⊆ S′. As such, Bδ (y)∩ S = /0,
contradicting the assumption that y is an accumulation point for S.

For the reverse direction, suppose S contains all its accumulation points. We need to show that S is closed.
It suffices to show that S′ is open. Let x ∈ S′. Then, x is not an accumulation of S since S already contains all its
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accumulation points. So, there exists δ > 0 such that

Bδ (x)\ ({x}∩S) = Bδ (x)∩S = /0.

We conclude that Bδ (x)⊆ S′, so S′ is open.

Definition 3.12 (uniform convergence of sequence of functions). Let { fn}n∈N be a sequence of
functions.

(i) The sequence converges to f on a set D ⊆ C if and only if

sup
w∈D

| fn (w)− f (w)| → 0 as n → ∞

(ii) The sequence converges locally uniformly to f on a set U ⊆ C if and only if for any point a ∈U ,
there exists an open set D with a ∈ D ⊆U such that fn → f uniformly on D

(iii) { fn}n∈N converges to f on compact subsets of U ⊆C if and only if for any compact subset D ⊆U ,
one has fn → f uniformly on D

3.3
The Cauchy-Goursat Theorem

Definition 3.13. Let

γ : [a,b]→ C be a piecewise C1 path and ϕ : {γ}→ C be a continuous function.

For any z ∈ C\{γ}, define

f (z) =
∫

γ

ϕ (w)
w− z

dw =
∫ b

a

ϕ (γ (t))
γ (t)− z

· γ ′ (t) dt in C.

The resulting function

f : C\{γ}→ C on C\{γ} is said to be Cauchy-integrally represented by γ and ϕ.

Note that the function f (z) in Definition 3.13 is well-defined since the integrand

ϕ (w)
w− z

is a continuous function of w on {γ}.

Example 3.8 (classic example). Fix some a ∈ C and r ∈ R>0. Take

γ : [0,2π]→ C to be γ (t) = a+ reit parametrizing {γ}=C (a,r) and

ϕ : {γ}→ C to be the constant function 1

Recall that C (a,r) denotes the circle of radius r centred at a. Then, the function Cauchy-integrally represented
by γ and ϕ is given as follows:

for all z ∈ C\{γ} we have
1

2πi

∫
γ

1
w− z

dw =

1 if z ∈ B(a,r) ;

0 if z ∈ C\B(a,r)
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Naively, one would need to evaluate the following integral:

1
2πi

∫
γ

1
w− z

dw =
1

2πi

∫ 2π

0

ireit

reit +a− z
dz =

1
2π

∫ 2π

0

eit

eit + a−z
r

dt

However, how do we continue? Backtracking, consider the integral

1
2πi

∫
γ

1
w− z

dw.

We first compute at the centre z = a. For all n ∈ Z, we have γ (t) = a+ reit . Hence, the integral becomes

1
2πi

∫
γ

1

(w−a)n+1 dw =
1

2πi

∫ 2π

0

ireit

(reit)n+1 dt =
1

2πrn

∫ 2π

0

(
reit)−n

dt =

1 if n = 0;

0 if n ̸= 0.

Next, for z ∈ B(a,r), we expand the integrand 1/(w− z) as a power series in terms of z−a to obtain

1
w− z

=
1

(w−a)− (z−a)
=

1
w−a

· 1
1− z−a

w−a
=

1
w−a

∞

∑
n=0

(
z−a
w−a

)n

.

For w ∈C (a,r), we have ∣∣∣∣ z−a
w−a

∣∣∣∣= |z−a|
r

< 1

so the aforementioned series converges uniformly for w ∈C (a,r). As such,

1
2πi

∫
γ

1
w− z

dw =
1

2πi

∫
γ

1
w−a

∞

∑
n=0

(
z−a
w−a

)n

dw

=
∞

∑
n=0

(
1

2πi

∫
γ

1

(w−a)n+1 dw

)
(z−a)n

Since
1

2πi

∫
γ

1

(w−a)n+1 dw =

1 if n = 0;

0 if n ̸= 0,

then
∞

∑
n=0

(
1

2πi

∫
γ

1

(w−a)n+1 dw

)
(z−a)n = 1.

Lastly, we fix z ∈ C\B(a,r), we expand the integrand 1/(w− z) as a power series in (z−a)−1, so we obtain

1
w− z

=
−1

(z−a)− (w−a)
=

−1
z−a

· 1
1− w−a

z−a
=

−1
z−a

∞

∑
n=0

(
w−a
z−a

)n

.

Hence, for w ∈C (a,r), we have ∣∣∣∣w−a
z−a

∣∣∣∣= r
|z−a|

< 1

so the last series above converges uniformly for w ∈C (a,r). Hence,

1
2πi

∫
γ

1
w− z

dw =
1

2πi
· −1

z−a

∫
γ

∞

∑
n=0

(
w−a
z−a

)n

dw =
1

2πi
· −1

z−a

∞

∑
n=0

(∫
γ

(w−a)n dw
)
(z−a)−n dw

since ∫
γ

(w−a)n dw = 0.
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Theorem 3.5. Let ϕ : {γ}→C be a continuous function and suppose f : C\→C be Cauchy-integrally
represented by γ and ϕ . So, we have

for all z ∈ C\{γ} we have f (z) =
∫

γ

ϕ (w)
w− z

dw in C.

Let a ∈ C\{γ} be given. Then, for all n ∈ N, define

cn,a =
∫

γ

ϕ (w)

(w−a)n+1 dw in C.

Then, for any r ∈ R>0 such that B(a,r)⊆ C\{γ},

the power series
∞

∑
n=0

cn,a (z−a)n converges uniformly to f (z) on B(a,r).

In particular, for all z ∈ B(a,r), we have∫
γ

ϕ (w)
w− z

dw = f (z) =
∞

∑
n=0

cn,a (z−a)n .

Theorem 3.6 (Cauchy-Goursat theorem for triangles). Let Ω ⊆C be an open set and f : Ω →C be a
continuous function on Ω. Assume that f is holomorphic on Ω except possibly at one point w ∈ Ω. Let
T = [a,b,c,d] be a triangular path in Ω and let ∆ be the closed set formed by T and its inside, so T = ∂∆.

If ∆ ⊆ Ω, then ∫
T

f (z) dz = 0.

Proof. We first deal with the case when w ̸∈ ∆. We use the midpoints of ∆ and subdivide ∆ into four triangles
∆1, . . . ,∆4. Bygiving the boundaries Tj = ∂∆ j appropriate directions, we see that each Tj is a triangular path
and ∫

T
f (z) dz =

4

∑
j=1

∫
Tj

f (z) dz.

Equivalently, we have the following diagram:

By the triangle inequality, we have ∣∣∣∣∫T
f (z) dz

∣∣∣∣≤ 4

∑
j=1

∣∣∣∣∫Tj

f (z) dz
∣∣∣∣
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so there must exist an index 1 ≤ j ≤ 4 such that∣∣∣∣∫T
f (z) dz

∣∣∣∣≤ 4
∣∣∣∣∫Tj

f (z) dz
∣∣∣∣ .

Set T (1) = Tj for such an index j. We can thus recursively define a sequence
{

T (n)
}

n∈N of closed triangular
paths and the closed sets

{
∆(n)

}
n∈N they close which satisfy T (n) = ∂∆(n). Hence,∣∣∣∣∫T (n)

f (z) dz
∣∣∣∣≤ 4

∣∣∣∣∫T (n+1)
f (z) dz

∣∣∣∣ so by induction we have
∣∣∣∣∫T

f (z) dz
∣∣∣∣≤ 4n

∣∣∣∣∫T (n)
f (z) dz

∣∣∣∣ .
Since ∆ is compact, it follows from that Ω ⊇ ∆ ⊇ ∆(1) ⊇ ∆(2) ⊇ . . . and ℓ

(
T (n)

)
= (1/2)n ℓT (n) that

∞⋂
n=1

∆
(n) = {z0}

which simply consists of single point z0 ∈ Ω†.

By the hypothesis, f is holomorphic at z0, hence for any ε > 0, there exists δ > 0 such that B(z0,δ ) ⊆ Ω

and for any z ∈ B(z0,δ ), we have∣∣ f (z)− f (z0)− f ′ (z0)(z− z0)
∣∣≤ ε |z− z0| .

Given any ε > 0, we can choose some n ∈ N sufficiently large such that

diam
(

∆
(n)
)
= (1/2)n diam(∆) is < ∆.

Since T (n) is a closed path and 1,z have primitives in Ω, we have∫
T (n)

1 dz =
∫

T (n)
z dz = 0.

Hence, ∫
T (n)

f (z) dz =
∫

T (n)
f (z)− f (z0)− f ′ (z0)(z− z0) dz.

The length of the path T (n) is
(
ℓ(T (n)

)
= (1/2)n ℓ(T ), where ℓ(T ) is the length of the original triangle T .

Applying the estimation lemma (Lemma 3.2), we have∣∣∣∣∫T (n)
f (z) dz

∣∣∣∣≤ ℓ
(

T (n)
)
· sup

z∈T (n)

∣∣ f (z)− f (z0)− f ′ (z0)(z− z0)
∣∣

≤
(

1
2

)n

· ℓ(T ) · ε ·
(

1
2

)n

diam(T )

≤ ε · 1
4n · ℓ(T ) ·diam(T )

Since ε > 0 is arbitrary and 1/4n becomes arbitrarily small as n → ∞, we conclude that

lim
n→∞

∣∣∣∣∫T (n)
f (z) dz

∣∣∣∣= 0.

Now, suppose w = a is a vertex of T . If ∆ is degenerate, i.e. all the vertices are collinear, then by independence
of parametrization, we have ∫

T
f (z) dz = 0 for any continuous f .

†This reminds me of the proof of the nested interval theorem in Real Analysis
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Next, suppose ∆ is not degenerate. We consider points d,e on (a,b) ,(a,c) respectively. Then,∫
T

f (z) dz =
∫

adea
f (z) dz+

∫
dbed

f (z) dz+
∫

ebce
f (z) dz.

Note that the integrals in teal are equal to 0 because w is not contained in the interiors of dbed and ebce. Again,
by the estimation lemma (Lemma 3.2), we have∣∣∣∣∫adea

f (z) dz
∣∣∣∣≤ ℓ(adea) · sup

z∈adea
| f (z)| .

Since these quantities can be made arbitrarily small, then the integral in red evaluates to 0. We conclude that∫
T

f (z) dz = 0.

In general, if w ∈ ∆, one can deduce that ∫
T

f (z) dz = 0.

The result follows.

Theorem 3.7 (local form of Cauchy-Goursat theorem/Cauchy integral theorem). Let Ω ⊆ C be an
open convex set (i.e. an open disc) and let f : Ω → C be a continuous function on Ω. Assume that f is
holomorphic on C except possibly at one point w ∈ Ω. Then, f has a primitive which is holomorphic on
Ω and for any closed piecewise C1 path γ in G, one has∫

γ

f (z) dz = 0.

Example 3.9. Let f (z) = Log(z+ 2) and the contour γ be the circle |z| = 1 oriented in the anticlockwise
direction. Use the Cauchy-Goursat theorem to prove that∫

γ

f (z) dz = 0.

Solution. Recall that Logz is analytic on C \ (−∞,0]. Thus, f (z) = Log(z+ 2) is analytic on C \ (−∞,−2].
However, (−∞,−2] lies outside the circle |z|= 1. Thus, f (z) is analytic inside and on the circle |z|= 1, which
is a simple closed contour. The result follows by the Cauchy-Goursat theorem. □

3.4
Cauchy’s Integral Formula

Theorem 3.8 (Cauchy’s integral formula). Let Ω ⊆ C be an open set and let f : Ω → C be a
holomorphic function on Ω. For any point z ∈ Ω and any r > 0 such that B(z,r)⊆ Ω, taking γ : [0,2π]→
C to be γ (t) = a+ reit parametrizing {γ}=C (z,r), for all a ∈ B(z,r), we have

f (a) =
1

2πi

∫
γ

f (z)
z−a

dz.

Proof. Define

g(z) =
f (z)− f (a)

z−a
which is analytic everywhere except at z = a.

Since the derivative of f exists at a, then by the first principles of differentiation,

lim
z→a

g(z) = f ′ (a) .
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By the Cauchy-Goursat theorem, we have∫
γ

g(z) dz = 0 which implies
∫

γ

f (z)− f (a)
z−a

dz = 0.

So, ∫
γ

f (z)
z−a

dz = f (a)
∫

γ

1
z−a

dz = f (a) ·2πi,

where the last equality follows since we are taking the contour integral on a loop around a.

Example 3.10. Let z0 ∈ C and γ be a simple closed contour enclosing z0 with positive orientation. Without
using Cauchy’s integral formula, and using only the fact that∫

γ

1
z− z0

dz = 2πi,

show that

if p(z) = z0 + z1z+ . . .+an−1zn−1 +anzn is a polynomial then
∫

γ

p(z)
z− z0

= p(z0) ·2πi.

Solution. By the division algorithm for polynomials, there exist polynomials f (z) and r such that p(z) =
(z− z0) f (z)+ r. So, p(z0) = r.

Hence, p(z) = (z− z0) f (z)+ p(z0) and we have∫
γ

p(z)
z− z0

dz =
∫

γ

f (z)+
p(z0)

z− z0
dz =

∫
γ

f (z) dz+ p(z0)
∫

γ

1
z− z0

dz = p(z0) ·2πi.

Note that the integral ∫
γ

f (z) dz = 0

by the Cauchy-Goursat theorem. □

Example 3.11. Let C be the circle |z|= 2 oriented in the anticlockwise direction. Evaluate∫
C

1
|z− i|2

dz.

Solution. We use the identity |z|2 = zz, so |z− i|2 = (z− i)(z+ i). Since |z|= 2, then z = 4/z, so

(z− i)(z+ i) = zz+ i(z− z)+1 = 5+ i
(

z− 4i
z

)
=

iz2 +5z+4
z

=
(iz+1)(z−4i)

z
.

Hence, the contour integral is equivalent to∫
C

z
(iz+1)(z−4i)

dz =
∫

C

f (z)
z− i

dz where f (z) =− iz
z−4i

.

By Cauchy’s integral formula, the integral is equivalent to 2πi f (i) =−2π/3. □

Theorem 3.9. The following are equivalent:
(i) f is holomorphic on Ω, i.e. for all a ∈ Ω, the limit

f ′ (a) = lim
h→0

f (a+h)− f (a)
h

exists in C.
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It is characterised as the unique c ∈ C satisfying for every ε > 0, there exists δ > 0 such that for
all z ∈ B(a,δ ), we have ∣∣ f (z)− f (a)− f ′ (a)(z−a)

∣∣≤ ε |z−a|

(ii) f is analytic on Ω or locally representable by a convergent power series, i.e. for all a ∈ Ω, there
exists a power series

∞

∑
n=0

an (z−a)n centred at a

and there exists a strictly positive r > 0 such that B(a,r) ⊆ Ω and the aforementioned sum
converges normally on B(a,r)

(iii) f is locally representable by a Cauchy’s integral, i.e. for all z ∈ G, there exists a strictly positive
r > 0 such that B(z,r)⊆ Ω and for all a ∈ B(z,r), we have

f (a) =
1

2πi

∫
C(a,r)

f (z)
z−a

dz.

Corollary 3.2 (Cauchy’s differentiation formula). Let Ω ⊆ C be an open set and let f : Ω → C be a
holomorphic function on Ω. For any point z ∈ Ω and any r > 0 such that B(z,r)⊆ Ω, taking γ : [0,2π]→
C to be γ (t) = a+ reit parametrizing {γ}=C (z,r), for all a ∈ B(z,r), we have

f (n) (a) =
n!

2πi

∫
γ

f (z)

(z−a)n+1 dz.

Proof. Consider Cauchy’s integral formula (Theorem 3.8) and perform induction.

Theorem 3.10 (Cauchy’s estimate). Let Ω ⊆ C be an open set and let f : Ω → C be a holomorphic
function on Ω. For any a ∈ Ω and any r > 0 such that B(a,r)⊆ Ω and any n ∈ Z≥0, one has∣∣∣ f (n) (a)∣∣∣≤ n!

rn · sup
w∈B(a,r)

| f (w)| .

Proof. By Cauchy’s differentiation formula (Corollary 3.2), we have

1
n!

· f (n) (a) =
1

2πi

∫
C(a,r)

f (z)

(z−a)n+1 dz.

Taking absolute value on both sides yields

∣∣∣ f (n) (a)∣∣∣= ∣∣∣∣∣ n!
2πi

∫
C(a,r)

f (z)

(z−a)n+1 dz

∣∣∣∣∣ .
By the estimation lemma (Lemma 3.2), the above is bounded above by

n!
2π

·2πr · 1
rn+1 sup

w∈C(a,r)
| f (z)|

and upon simplification, we obtain the desired result.

Theorem 3.11 (Liouville’s theorem). If f is a bounded and entire function, then f is a constant.
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Proof. Since f is entire, we can represent it using a Taylor series about z = 0, so

f (z) =
∞

∑
n=0

anzn.

By Cauchy’s integral formula,

an =
f (n)(0)

n!
=

1
2πi

∫
C

f (z)
zn+1 dz,

where C is a circle of radius r centred at the origin. Since f is bounded, then | f (z)| ≤ M for some constant M
and for all z ∈ C. We have

|an|=
∣∣∣∣ 1
2πi

∫
C

f (z)
zn+1 dz

∣∣∣∣≤ 1
2π

∫
C

∣∣∣∣ f (z)
zn+1

∣∣∣∣|dz| ≤ 1
2π

∫
C

M
|zn+1| |dz| ≤ M

2πrn+1

∫
C
|dz|= M

2πrn+1 ·2πr =
M
rn

Now, as |z| = r on the circle C, by setting r > 0 to be arbitrary, as r tends to infinity, an = 0 for all n ≥ 1.
This is because f is entire. Hence, f (z) = a0 = M/r which is a constant. In fact, we invoked Cauchy’s estimate
(Theorem 3.10) here.

Example 3.12. Find all entire functions f (z) with f (0) = 2 and | f (z)− ez| ≥ 1 for all z ∈ C.

Solution. We note that
1

| f (z)− ez|
≤ 1 where f (z)− ez ̸= 0.

So, 1/( f (z)− ez) is bounded and entire. By Liouville’s theorem,

1
f (z)− ez = c,

where c is a constant. Since f (0) = 2, then c = 1. As such, f (z) = ez +1. □

Example 3.13. Let g be an entire function such that |g′(z)|< |g′(z)+ i| for all complex numbers z. Show that
there exist α,β ∈ C such that g(z) = αz+β for all z ∈ C.

Solution. Since g is entire, then g′ is also entire. Let

h(z) =
g′(z)

g′(z)+ i
.

Then h is the quotient of two entire functions such that the denominator is not equal to zero at each z ∈C, hence
h is entire. It is clear that for all z ∈C, |h(z)|< 1, so h is bounded on C. By Liouville’s theorem, h(z) = c, where
c is a constant, so g′(z) = cg′(z)+ ci. We have

g′(z) =
ic

1− c
= α.

Hence, g(z) = αz+β . □

Example 3.14. Let f : C→ C be an entire function such that

lim
z→∞

f (z) = ∞.

Show that f has at least one zero in C.
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Solution. Suppose on the contrary f has no zeros in C. Consider

g(z) =
1

f (z)
.

Note that g is entire. Using the given limit, there exists R > 0 such that for all |z|> R, | f (z)|> 1. This implies
that |g(z)| < 1 but since g is continuous, it obtains a maximum M on the compact set D(0,R). Hence, for all
z ∈ C, |g(z)| ≤ max{1,M}, so by Liouville’s theorem, g is a constant, implying that f is a constant, which is a
contradiction. □

Example 3.15. Find all entire functions f (z) such that

| f (z)| ≤ 1
1+ x2 +2y2 for all z = x+ iy ∈ C.

Solution. Since x2,y2 ≥ 0, then | f (z)| ≤ 1. By Liouville’s theorem, f is a constant, say c. Then,

c ≤ 1
1+ |z|2 + y2 .

It is clear that

lim
z→∞

f (z) = 0

so c = 0. Hence, the only function satisfying the hypothesis is f (z) = 0. □

Example 3.16 (MA5217 AY24/25 Sem 1 Homework 1). Find all entire functions f satisfying f (z+1)= f (z)
and f (z+ i) = f (z) for every z ∈ C.

Solution. By an inductive argument, for all n ∈ Z, we have

f (z+n) = f (z) and f (z+ni) = f (z) .

Hence, it suffices to consider the behaviour of f on the unit square [0,1]× [0,1]. Since the unit square is a
compact set, it is bounded by the Heine-Borel theorem. Hence, f (x+ iy) is bounded for all x,y ∈ R. Since f
is a bounded function, it is constant (follows by Liouville’s theorem where we assumed that f is entire). So,
f (z) = c for some c ∈ R. □

Example 3.17 (Dinh’s 70 problems). Let f = u+ iv be an entire function. Show that if u2(z)≥ v2(z) for all
z ∈ C, then f must be a constant.

Solution. We have f 2 = u2 − v2 +2uvi. Consider

g = e− f 2
= ev2−u2

e−2uvi which is entire and |g| ≤ 1
e
.

By Liouville’s theorem, g is a constant. So, e− f 2
= k for some constant k. Thus, f is a constant. □

Theorem 3.12 (fundamental theorem of algebra). Every non-constant polynomial with coefficients
in C has a zero in C. Equivalently, if p(z) is a non-constant polynomial with coefficients in C, then there
exists a ∈ C such that p(a) = 0.
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Proof. Suppose on the contrary that for all z ∈ C, one has p(z) ̸= 0, i.e. p has no zero in C. Say

p(z) = zn +an−1zn−1 + . . .+a0 is a non-constant polynomial.

Then, clearly,
lim
n→∞

p(z) = lim
n→∞

zn (1+an−1zn−1 + . . .+a0z−n)= ∞.

So, f (z) = 1/p(z) is a non-constant entire function and

lim
z→∞

f (z) = 0.

By the formal definition of a limit, there exists R > 0 such that for all z ∈C\B(0,R), one has | f (z)|< 1. As the
closed ball B(0,R) is a bounded set, then by the Heine-Borel theorem, B(0,R) is compact. As f is continuous
on this compact ball, then there exists M > 0 such that for all z ∈ B(0,R), we have | f (z)| ≤ M. This shows that
f is bounded on C. However, f is non-constant, which contradicts Liouville’s theorem (Theorem 3.11).

Corollary 3.3. Let p(z) be a polynomial with coefficients in C and a1, . . . ,am ∈ C are its zeros with a j

having multiplicity k j ∈ N. Then, there exists a non-zero constant c such that

p(z) = c(z−a1)
k1 . . .(z−am)

km where deg p = k1 + . . .+ km.

3.5
Applications of Cauchy’s Integral Formula

Theorem 3.13 (Morera’s theorem). Let Ω ⊆C be an open set and f : Ω →C be a continuous function
on Ω. Suppose for any point z0 ∈ Ω, there exists R > 0 such that B(z0,R)⊆ Ω and

for all closed triangular paths γ in B(z0,R) we have
∫

γ

f dz = 0,

then f is holomorphic on Ω.

Proof. For any z0 ∈ Ω, we see that f has a holomorphic primitive F on B(z0,R) to see that f has a holomorphic
primitive F on B(z0,R). But then f = F ′ is also holomorphic on B(z0,R) since holomorphicity is equivalent to
analyticity. Hence, f is holomorphic on Ω.

Theorem 3.14 (Weierstrass convergence theorem for sequences of holomorphic functions). Let
Ω ⊆ C be an open set and { fn}n∈N be a sequence of holomorphic functions on Ω. Suppose fn → f
locally uniformly on Ω. Then, the following hold:

(i) f is holomorphic on Ω

(ii) The sequence { f ′n}n∈N of derivatives also converges locally uniformly on Ω to the limit f ′

Proof. We first prove (i). For any sufficiently small closed triangular path γ in Ω, we have fn → f uniformly
on the compact set {γ}. As such,∫

γ

f dz = lim
n→∞

∫
γ

fn dz

= lim
n→∞

0 by the Cauchy-Goursat theorem (Theorem 3.7)

= 0
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By Morera’s theorem (Theorem 3.13), f is holomorphic on Ω.

We then prove (ii). Given a ∈ Ω, there exists R > 0 such that B(a,R) ⊆ Ω. Fix 0 < r < R. Then, for any
z ∈ B(a,r), one has B(z,R− r) ⊆ B(a,R). By Cauchy’s estimate (Theorem 3.10) applied to the derivative of
fn − f , we have for all z ∈ B(a,r),∣∣ f ′n (z)− f ′ (z)

∣∣≤ 1
R− r

sup
w∈B(z,R−r)

| fn (w)− f (w)| ≤ 1
R− r

sup
w∈B(a,R)

| fn (w)− f (w)| .

Since fn → f uniformly on B(a,R), then the aforementioned expression tends to 0 as n → ∞. Hence, f ′n → f ′

uniformly on B(a,r), and hence locally uniformly on Ω.

Theorem 3.15. Let f be an entire function. Define g(z) = f ′(a) if z = a and

g(z) =
f (z)− f (a)

z−a

if z ̸= a. Then, g is also entire.

Theorem 3.16 (extended Liouville’s theorem). If f is entire and if for some k ∈ N, there exists
constants A,B > 0 such that

| f (z)| ≤ A+B|z|k,

then f is a polynomial of degree at most k.

Example 3.18 (Dinh’s 70 problems). Let u be a real-valued harmonic function in the complex plane such
that

u(z)≤ a |ln |z||+b

for all z, where a and b are positive constants. Prove that u is constant.

Solution. By Liouville’s theorem, since u is harmonic, it suffices to show that u is bounded. Let f (z) =
a |ln |z||+b. Then, by Cauchy’s integral formula,

∣∣u′(k)∣∣= ∣∣∣∣∣ 1
2πi

∫
γ:|z|=R

f (z)

(z− k)2 dz

∣∣∣∣∣≤ R · a |lnR|+b

|R−|k||2
,

where we have considered γ to be the circle of radius R centred at the origin and naturally, the path is taken
to be positively-oriented. To establish the upper bound for |u′(k)|, the triangle inequality and reverse triangle
inequality are used. Now, note that

lim
R→∞

R · a |lnR|+b

|R−|k||2
,= 0

which implies that |u′(k)|= 0, or rather, u′(k) = 0. So, u(k) is a constant for all k ∈ R. □

Theorem 3.17 (Gauss’ mean value theorem). If f is analytic in D and α ∈ D, then

f (α) =
1

2π

∫ 2π

0
f (α + reiθ ) dθ .

Proof. By Cauchy’s integral formula, for a ∈ D

f (a) =
1

2πi

∫
C

f (z)
z−a

dz.
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Let C be a circle of radius r centred at a. Then, our parameterisation is z = a+ reiθ , so dz/dθ = ireiθ . Hence,

f (a) =
1

2πi

∫ 2π

0

f (a+ reiθ )

a+ reiθ −a
· ireiθ dθ

and the result follows with some simple cancellation.

Theorem 3.18 (maximum modulus theorem for open balls). Suppose f (z) is analytic throughout a
neighbourhood |z− z0| < R of a point z0. If | f (z)| ≤ | f (z0)| for each z in the neighbourhood, then f (z)
attains a constant value f (z0) throughout the neighbourhood.

Theorem 3.19 (maximum modulus principle). If f is analytic in D and

| f (z)| ≤ | f (z0)| for all z ∈ D then f (z) is a constant.

Example 3.19 (Dinh’s 70 problems). Let f (z) = a0 + a1z+ . . .+ anzn be a complex polynomial of degree
n > 0. Prove that

1
2πi

∫
|z|=R

zn−1| f (z)|2 dz = a0anR2n.

Solution. Note that | f (z)|2 = f (z) · f (z). Setting z = Reiθ , the integral becomes

1
2π

∫ 2π

0
Rneinθ

(
a0 +a1Reiθ + . . .+anRneinθ

)(
a0 +a1Re−iθ + . . .+anRne−inθ

)
dθ .

Since ∫ 2π

0
eikθ dθ = 0 for all k ̸= 0,

upon multiplying the polynomials a0 +a1Reiθ + . . .+anRneinθ and a0 +a1Re−iθ + . . .+anRne−inθ , we wish to
extract the coefficient of e−inθ . So, the integral becomes

1
2πi

∫ 2π

0
Rneinθ a0anRne−inθ dθ

and the result follows. □

Example 3.20 (Dinh’s 70 problems). Suppose u(z) is harmonic on D(0,r), where r > 1. Prove that∫ 2π

0
u(eit)cos2

( t
2

)
dt = πu(0)+

π

2
u′(0) and

∫ 2π

0
u(eit)sin2

( t
2

)
dt = πu(0)− π

2
u′(0),

where u′(0) = ux(0).

Solution. Let I1 and I2 denote the two integrals respectively. We have

I1 + I2 =
∫ 2π

0
u(eit) dt and I1 − I2 =

∫ 2π

0
u(eit)cos t dt.

We parametrise each integral using z = eit so dz/dt = ieit . Also, recall that cos t =
(
z+ z−1

)
/2. So,

I1 + I2 =
1
i

∫
|z|=1

u(z)
z

dz = πu(0) ,

where we used Cauchy’s integral formula. Also,

I1 − I2 =
1
2i

∫
|z|=1

u(z)+
u(z)
z2 dz =

1
2i

∫
|z|=1

u(z)
z2 dz = πu′ (0) ,

where we used Cauchy’s integral formula and the fact that u(z) is analytic on D(0,r) (since u(z) is harmonic
on D(0,r)). □
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Chapter 4
Further Properties of Holomorphic Functions

4.1
Properties of Holomorphic and Harmonic Functions

Example 4.1 (Dinh’s 70 problems). Suppose f (z) is an odd function and holomorphic in C\{0} and satisfies

| f (z)| ≤ |z|2 + 1
|z|2

for all z ̸= 0.

Prove that

f (z) =
a−1

z
+a1z for all z ∈ C\{0} where a−1,a1 ∈ C.

Solution. Since f is holomorphic in C\{0}, its Laurent series representation about z = 0 is

f (z) = ∑
k∈Z

akzk.

f is odd implies f (−z) =− f (z), so

f (z) = . . .+
a−3

z3 +
a−1

z
+a1z+a3z3 + . . . .

Note that for |z| ≤ 1, we have |z2 f (z)| ≤ |z|4 +1 ≤ 2 and

z2 f (z) = . . .+
a−3

z
+a−1z+a1z3 +a3z5 + . . .

so it forces a−3,a−5, . . . ,a5,a7, . . .= 0. The result follows. □

Here is an alternative solution.

Solution. Again, write
f (z) = ∑

k∈Z
akzk.

By Cauchy’s estimate (Theorem 3.10), if | f (z)| ≤ M, we have

| f (k)(a)| ≤ k!M
Rk .

So, for |z| ≤ R, we have

|ak| ≤
1
Rk

(
1

R2 +R2
)
.

For k ≥ 3, lim
r→∞

|ak|= 0 and for k ≤−3, lim
r→0

|ak|= 0. So, ak = 0 for all |k| ≥ 3. Hence,

f (z) =
a−2

z2 +
a−1

z
+a0 +a1z+a2z2.

Using the fact that f is odd, the result follows. □

Example 4.2. Let f (z) =
∞

∑
n=0

anzn be holomorphic in D(0,1) and assume that the integral

A :=
∫∫

D(0,1)
| f ′(z)|2 dxdy < ∞.
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(a) Express A in terms of the coefficients an.
(b) Prove that

| f (z)− f (0)| ≤

√
A
π

ln
(

1
1−|z|2

)
for all z ∈ D(0,1).

Solution.

(a) Note that

f ′(z) =
∞

∑
n=1

nanzn−1.

We shall parametrise z using polar coordinates. Let z = reiθ . As such,

∫∫
D(0,1)

∣∣ f ′ (z)∣∣ dxdy =
∫ 1

0

∫ 2π

0

∣∣∣∣∣ ∞

∑
n=1

nanrn−1ei(n−1)θ

∣∣∣∣∣
2

r drdθ

=
∫ 1

0

∫ 2π

0

∞

∑
m=1

∞

∑
n=1

mnamanrm+n−1ei(m+n−2)θ drdθ

= 2π

∫ 1

0

∞

∑
n=1

n2|an|2r2n−1 dr

= π

∞

∑
n=1

n|an|2

(b) Note that f (0) = 0 and the RHS can be written as√
ln
(

1
1−|z|2

)
∞

∑
n=1

n|an|2.

Starting with the LHS,

| f (z)|=

∣∣∣∣∣ ∞

∑
n=0

anzn

∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
n=1

anzn

∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
n=1

(√
nan
)( zn

√
n

)∣∣∣∣∣≤
√√√√( ∞

∑
n=1

n |a2
n|
)(

∞

∑
n=1

z2n

n

)

where we applied the Cauchy-Schwarz inequality at the end. The result follows.

Example 4.3 (MA5217 AY24/25 Sem 1 Homework 1). Show that the function h(z) = sin(sinz)+ sin |z|2 is
not holomorphic in any domain of C.

Solution. Note that

sinz =
eiz − e−iz

2i
.

We let z = x+ iy,x,y ∈ R and note that |z|2 = x2 + y2. Hence,

h(z) = sin
(

eiz

2i

)
cos
(

e−iz

2i

)
− cos

(
eiz

2i

)
sin
(

e−iz

2i

)
+ sin

(
|z|2
)

By the Looman-Menchoff theorem, it suffices to prove that h does not satisfy the Cauchy-Riemann equations,
i.e.

∂u
∂x

=
∂v
∂y

and
∂v
∂x

=−∂u
∂y

The computation is tedious so we skip the details. □
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Example 4.4 (MA5217 AY24/25 Sem 1 Homework 1). Find all holomorphic functions f (z) in C\{1} such
that

Res( f ,1) = 1, lim
z→∞

( f (z)− z) = 2, lim
z→1

|z−1|4/3 f (z) = 0.

Solution. We claim that

f (z) = z+2+
1

z−1
.

By the second condition, we infer that

f (z) = z+2+
∞

∑
n=1

1
(az+b)n .

By the third condition, we infer that

lim
z→1

(z−1)4/3
∞

∑
n=1

1
(az+b)n = 0

which implies we have to restrict the index of the infinite sum to n = 1 instead of ninN. Hence,

f (z) = z+2+
1

az+b
.

We see that 1/(az+ b) has a simple pole at z = −b/a but the first condition implies that z = 1 is a pole, so
a =−b. Since the value of the residue at z = 1 is 1, then a = 1, so

f (z) = z+2+
1

z−1
.

□

Example 4.5. Let f and g be entire functions and suppose that | f (z)| ≤ |g(z)| for all z ∈ C. Show that f (z) =
cg(z) for some constant c ∈ C.

Solution. First, we assume that g is identically equal to zero. Then, the result immediately follows. Now, we
consider the case where g is not identically equal to zero. Define h(z) = f (z)/g(z) on C excluding the set of
zeros of g. As such, h is holomorphic outside the zeros of g and |h(z)| ≤ 1. As h is bounded and entire, the
result follows by Liouville’s theorem. □

Example 4.6 (Dinh’s 70 problems). Suppose f is entire and f (z) is real iff z is real. Prove that f has at most
one zero.

Solution. Suppose f (z) = 0, then it implies that z is real. Suppose on the contrary that f has a zero x0 ∈R with
a multiplicity m ≥ 2. Then, we can write f (z) as the following power series:

f (z) = (z− x0)
m(a0 +a1(z− x0)+a2(z− x0)

2 + . . .)

Here, a0 ̸= 0. Note that

a0 = lim
z→x0

f (z)
(z− x0)m

so for any z ∈R\{x0}, we have
f (z)

(z− x0)m ∈R. Hence, a0 ∈R. Now, write z = x0+εeiθ , so we are considering

the general case when z ∈ C. It is clear that

f (z) = ε
memiθ (a0 +a1εeiθ +a2ε

2e2iθ + . . .).
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Define g(θ) = Im(emiθ (a0 + εu(θ ,ε) + iεv(θ ,ε))), where u,v are real and continuous functions and ε is
sufficiently small. Note that g(π/2m)g(3π/2m) < 0 so by the intermediate value theorem, there exists θ ′ ∈
(π/2m,3π/2m) such that g(θ0) = 0. So, f (x0 + εeiθ0) ∈ R. But because m ≥ 2, it implies that x0 + εeiθ0 ̸∈ R,
so we reached a contradiction. The result follows. □

Example 4.7. Let f be a holomorphic function in the unit disc D such that | f (z)| < 1 for z ∈ D. Show that
| f ′′(0)| ≤ 2. Give an example of such a map with f ′′(0) = 2.

Solution. We use Cauchy’s Differentiation Formula. Note that

f ′′(0) =
2!

2πi

∫
C

f (z)
z3 dz.

Here, we let C be such that |z|= r, where r < 1 (i.e. C contains all points interior to the circle of radius 1 centred
at the origin). Using the parametrisation z = reiθ for 0 ≤ θ ≤ 2π , we see that

| f ′′(0)| ≤ 1
π

∣∣∣∣∫ 2π

0

f (reiθ )

r3e3iθ · ireiθ dθ

∣∣∣∣≤ 1
πr2

∣∣∣∣∫ 2π

0
f (reiθ ) dθ

∣∣∣∣≤ 2
r2 .

Hence, letting r tend to 1, the result follows.

For the later part of the question, we need to find a map such that f ′′(0) = 2. Well, consider∫
|z|=r

f (z)
z3 dz = 2πi

for which an obvious answer is f (z) = z2. □

Example 4.8 (Dinh’s 70 problems). Determine all complex holomorphic functions f defined on the unit disk
which satisfy

f ′′
(

1
n

)
+ f

(
1
n

)
= 0

for n = 2,3,4, . . .

Solution. Let g(z) = f ′′(z)+ f (z), so g is holomorphic on D. We have g(1/n) = 0 for all n = 2,3,4, . . . and
since lim

n→∞
1/n = 0 ∈D, it follows that g(z) = 0 on D. As such, f (z) =− f ′′(z) on z ∈D. One can use Maclaurin

Series to dedcue that f (z) = f (0)cosz+ f ′(0)sinz. □

Theorem 4.1 (Casorati-Weierstrass theorem). Let f have an isolated essential singularity at z0. Then,
for any w ∈ C, f (z) comes arbitrarily close to w in every deleted neighbourhood of z0. That is, for any
δ > 0, f (D′(z0,δ )) is a dense subset of C.

Proof. Suppose on the contrary that for some δ > 0, f (D′(z0,δ )) is not dense in C. Then, there exists w ∈ C
and ε > 0 such that

D(w,ε)∩ f (D′(z0,δ )) =∅.

For z ∈ D′(z0,δ ), write

g(z) =
1

f (z)−w
.

Then, g is bounded and holomorphic on D′(z0,δ ), so g has a removable singularity at z0. Let m be the order of
the zero of g at z0. If g(z0) ̸= 0, set m = 0. Otherwise, write g(z) = (z− z0)

mg1(z), where g1 is holomorphic and



MA3211 MA3211S MA4247 MA5217 COMPLEX ANALYSIS Page 52 of 95

does not vanish on D(z0,δ ). Hence,

(z− z0)
mg1(z) =

1
f (z)−w

.

Thus, we can write f (z) as

f (z) = w+
g2(z)

(z− z0)m ,

where g2(z) = 1/g1(z) is a holomorphic function on D(z0,δ ). Thus, f has a removable singularity (m = 0) or a
pole (m ̸= 0) at z0, which is a contradiction.

Definition 4.1. A meromorphic function in D is holomorphic on all D, except on a set of isolated points
which are poles. Also, they can be written in the form f = u/v, where u,v ∈ H(D) and v ̸= 0, and they
do not have a common zero.

4.2
The Argument Principle and Rouché’s Theorem

Theorem 4.2 (argument principle). Let f ∈ H(Ω) and γ be a positively oriented, piecewise differen-
tiable, simple closed contour in Ω such that all points interior to γ belong to Ω. Suppose f has no zero
on γ . The zeros of f inside γ are a1,a2, . . . ,an and α1,α2, . . . ,αn are their respective multiplicites. Then,

n

∑
j=1

α j =
1

2πi

∫
γ

f ′(z)
f (z)

dz.

Example 4.9 (Dinh’s 70 problems). Evaluate the integral

∫
|z|=2

f ′(z)
f (z)

dz,

where f (z) =
sinzcosz

z7 − z5 + z3 − z
, and |z|= 2 is positively oriented.

Solution. We use the argument principle. The answer is 2πi(Z−P), where Z and P are to be determined. Here,
Z and P refer to the respective number of zeros and poles in the circle |z|= 2. To calculate Z, set sinzcosz = 0,
so z =−π/2,0,π/2. Hence, Z = 3. To calculate P, set z7 − z5 + z3 − z = 0, so z(z4 +1)(z+1)(z−1) = 0. The
solutions to z4 +1 = 0 are z = eiπ/4,e−iπ/4,e3iπ/4,e−3iπ/4. As such, P = 7, so the required answer is −8πi. □

Theorem 4.3 (Rouché’s theorem). Let f ,g ∈ H(Ω) and γ be a piecewise differentiable simple closed
curve such that all the points interior to γ are contained in Ω. Assume that

| f (z)−g(z)|< | f (z)|

for all z ∈ γ . Then, f and g have the same number of zeros (counting multiplicity) inside γ .

Example 4.10 (Dinh’s 70 problems). Determine the number of zeros of ez2 −3z4 in the unit disk.

Solution. For |z| = 1 (i.e. on the boundary of the unit disk), |ez2 | ≤ e ≤ 3 = 3|z4| so it follows by Rouché’s
theorem that there are 4 zeros. □
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Example 4.11 (Dinh’s 70 problems). Let Nk be the number of roots (counting multiplicity) in the disk
D(0,k) = {|z|< k} of the equation

z6 −5z2 +10 = 0.

For each positive integer k, determine Nk.

Solution. N1 = 0; now consider the case when k ≥ 2. On |z| = 2, |5z2 − 10| ≤ 5|z|2 + 10 = 30 ≤ 26 = |z|6, so
by Rouché’s’s theorem, Nk = 6 for k ≥ 2. □

Example 4.12. Let r > 0. Prove that for n sufficiently large, the polynomial

1+ z+
z2

2!
+ . . .+

zn

n!
has no root in D(0,r).

Solution. Fix an r > 0. Define f (z) = ez and gn(z) to be the polynomial above. For z on D(0,r), i.e. |z|= r,

| f (z)−gn(z)|=

∣∣∣∣∣ ∑
k≥n+1

zk

k!

∣∣∣∣∣≤ ∑
k≥n+1

rk

k!
.

We note that as n → ∞, the sum on the right tends to zero. For n large enough, the last sum on the right is
smaller than e−r. On the other hand, by setting z = x+ iy, where x,y ∈C, we see that | f (z)|= ex ≥ e−|z| = e−r.
Therefore, for z on D(0,r), we have

f (z)−gn(z)|< | f (z)|.

By Rouché’s theorem, f and gn have the same number of zeros inside D(0,r). However, f vanishes nowhere so
we can conclude that gn does not vanish in D(0,r). □

Example 4.13. Find the number of zeros (counting multiplicity) of the function z5 +6z3 +11 in the annulus
2 < |z|< 3.

Solution. Let f (z) = z5+6z3+11. On the circle |z|= 3, | f (z)−z5|= |6z3+11| ≤ 6|z3|+11= 173< 243= |z5|
so by Rouché’s theorem, the number of zeros of f (z) in the region 0 < |z|< 3 is equal to that of z5, which is 5.

On the circle |z| = 2, we have | f (z)− 6z3| = |z5 + 11| ≤ 25 + 11 = 43 < 48 = |6z3| so the number of zeros
of f (z) in the region 0 < |z|< 2 is equal to that of 6z3, which is 3. Therefore, f has exactly 5−3 = 2 zeros in
the annulus 2 < |z|< 3. □

Example 4.14 (Dinh’s 70 problems).
(a) For each integer n ≥ 1, find the number of zeros (counting multiplicity) in the disk D(0,n) of the

polynomial z7 +5z3 − z−2.
(b) Prove that the function u(x,y) = sinhxsiny is harmonic and find its harmonic conjugates.

Solution.
(a) Let Nn be the number of zeros. We first show that N1 = 3. Note that on |z|= 1, we have

|z7 +5z3 − z−2−5z3|= |z7 − z−2| ≤ |z|7 + |z|+2 = 4 ≤ 5 = 5|z|3.

By Rouché’s’s theorem, N1 = 3.

For n ≥ 2, we show that Nn = 7. Note that on the boundary |z|= n, we have

|z7 +5z3 − z−2− z7| ≤ 5|z|3 + |z|+2 = 5n3 +n+2 ≤ n7 = |z|7.

The result follows by Rouché’s’s theorem.
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(b) Trivial. Show that u satisfies Laplace’s equation, then to find its harmonic conjugates, use the Cauchy-
Riemann equations.

Example 4.15. Let a1, . . . ,an ∈ D(0,1) and

f (z) =
n

∏
k=1

ak − z
1−akz

.

Prove that for each b ∈ D(0,1), f (z) = b has exactly n roots in D(0,1), counting multiplicity.

Solution. For |z|= 1, we have z = 1/z. Hence,∣∣∣∣ ak − z
1−akz

∣∣∣∣= |ak − z|
|z| |1/z−ak|

=
|ak − z|
|z−ak|

= 1.

We infer that for |z|= 1, | f (z)|= 1. We deduce that for b ∈ D(0,1),

|( f (z)−b)− f (z)|= |b|< 1 = | f (z)|.

By Rouché’s theorem, f (z)− b and f (z) have the same number of zeros in D(0,1). The roots of f (z) = 0 are
a1, . . . ,an (so there are n roots), as such, the result follows. □

Example 4.16 (Dinh’s 70 problems). Show that if the integer n is sufficiently large, the equation

z = 1+
( z

2

)n

has exactly one solution in the disk |z|< 2.

Solution. Let

fn (z) = z−1−
( z

2

)n
and f (z) = z−1.

For arbitrary ε > 0, consider the boundary of C (0,2− ε), we have

| fn (z)− f (z)|=
∣∣∣ z
2

∣∣∣n = (2− ε

2

)n

=
(

1− ε

2

)n
.

Also,
| f (z)|= |z−1| ≥ |z|−1 = 1− ε by the reverse triangle inequality.

By Rouché’s’s theorem, we need | fn − f | ≤ | f |, i.e.(
1− ε

2

)n
≤ 1− ε.

So, we choose

n ≥ ln(1− ε)

ln(1− ε/2)
where n ∈ N and 0 < ε ≤ 1

2
.

The number of zeros of fn in D(0,2− ε) is 1. Letting ε → 0, the result follows. □

Theorem 4.4 (Hurwitz’s theorem). Let fn : Ω → C, where n ∈ N, be a sequence of holomorphic
functions that converges locally uniformly to a function f : Ω → C. Let γ be a piecewise differentiable,
simple closed contour in Ω such that all points interior to γ are contained in Ω. Assume that f has no
zero on γ . Then,

there exists N ∈ N such that for all n > N fn and f have the same number of zeros inside γ.
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Example 4.17. Assume that f is holomorphic in a neighbourhood of D(0,1) and that f ′(z) has no zero on
∂D(0,1). Prove that for n sufficiently large,

Fn(z) = f
(

z+
1
n

)
− f (z)

has the same number of zeros in D(0,1) as f ′(z).

Solution. We consider the function gn(z) = nFn(z). Note that

gn(z) = n
[

f
(

z+
1
n

)
− f (z)

]
,

so
lim
n→∞

gn(z) = lim
n→∞

f (z+1/n)− f (z)
1/n

= f ′(z).

By the Fundamental Theorem of Calculus,

gn(z) =
f (z+1/n)− f (z)

1/n
=
∫ 1

0
f ′
(

z+
t
n

)
dt.

Hence, gn converges locally and uniformly in a neighbourhood to f ′. By Hurwitz’s Theorem, gn has the same
number of zeros as f ′ in D(0,1) when n is sufficiently large. Therefore, Fn satisfies the same property. □

4.3
Open Mapping Theorem and the Maximum Modulus Principle

Theorem 4.5 (open mapping theorem). Let Ω ⊆ C be a connected open set and let f : Ω → C be a
holomorphic function on Ω. If f is non-constant, then f (Ω)⊆ C is an open set.

Theorem 4.6 (maximum modulus principle). Let Ω ⊆ C be an open set and let f : Ω → C be a
holomorphic function on Ω. Suppose there exists a point a ∈ G and an open neighbourhood D ⊆ Ω of a
such that

| f (a)| ≥ sup
w∈D

| f (w)| , i.e. | f (z)| attains a local maximum at a ∈ G.

Then, f is constant on the connected component of a in Ω.

Proof. We choose R > 0 such that B(a,R)⊆ D. First, we show that | f | is constant of value | f (a)| on B(a,R).
For any 0 < r < R, we have B(a,r)⊆ B(a,R) so by Cauchy’s integral formula, we have

f (a) =
1

2πi

∫
C(a,r)

f (w)
w−a

dw =
1

2π

∫ 2π

0
f
(
a+ reit) dt

where we parametrised using γ (t) = a+ reit on the circle C (a,r). Hence,

1
2π

∫ 2π

0
| f (a)| dt = | f (a)| ≤ 1

2π

∫ 2π

0

∣∣ f (a+ reit)∣∣ dt.

That is,
1

2π

∫ 2π

0
| f (a)|−

∣∣ f (a+ reit)∣∣ dt ≤ 0.

By the hypothesis that | f (a)| ≥ sup | f (w)| over all w ∈ D, we have

| f (a)|−
∣∣ f (a+ reit)∣∣≥ 0.
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As such, for all 0 ≤ t ≤ 2π , we must have
∣∣ f (a+ reit

)∣∣= | f (a)| and this holds for all 0 < r < R.

We then deduce that f is constant on B(a,R). It is a known fact that if Ω ⊆ C is a connected open set and
f : Ω → C is a holomorphic function on Ω, if

| f | is constant on Ω then f is also constant on Ω.

By applying the identity theorem to f (z)− f (a), we conclude that f is constant of value f (a) on the connected
component of a in Ω.

Example 4.18. Suppose f is holomorphic on a neighbourhood of the unit disc and satisfies f (0) = 3+4i and
| f (z)| ≤ 5 if |z|= 1. Find f ′ (0).

Solution. We prove that f is constant. Suppose on the contrary that f is not constant, then by the maximum
modulus principle,

5 = f (0)< max
|z|=1

| f (z)| ≤ 5.

This is a contradiction, so f ′ (0) = 0. □

Example 4.19. Let f be a continuous function on A = {1 ≤ |z| ≤ 4} and holomorphic on A = {1 < |z|< 4}.
Assume that

max
|z|=1

| f (z)|= 5 and max
|z|=4

| f (z)|= 20.

(i) Show that | f (2)| ≤ 10.
(ii) Find all functions f such that f (2) = 10.

Solution.
(i) Define g(z) = f (z)/z. Then,

max
|z|=1

|g(z)|= max
|z|=4

|g(z)|= 5.

By the maximum modulus principle, |g(z)| ≤ 5 for z ∈ A. Setting z = 2, we have f (2)≤ 10.
(ii) g(2) = 5. By the maximum modulus principle, g is a constant, so g(z) = 5. Hence, f (z) = 5z.

Corollary 4.1 (maximum modulus principle for bounded regions). Let Ω ⊆ C be a bounded open set
and let f : Ω → C be a continuous function on Ω which is holomorphic on Ω. Then, for all z ∈ Ω,

| f (z)| ≤ sup
w∈Ω

| f (w)| .

Equivalently, the maximum modulus of f is always attained on the boundary ∂Ω of Ω.

Proof. Since Ω is bounded, then Ω is compact so | f | : Ω →R attains its maximum value on Ω, i.e. there exists
a ∈ Ω such that

| f (a)|= sup
z∈Ω

| f (z)| .

If a ∈ ∂Ω, then we are done. Otherwise, there exists R > 0 such that D = B(a,R)⊆ Ω and so

| f (a)| ≥ sup
w∈D

| f (w)| .

Define Ω0 to be the connected component of Ω containing a. By the maximum modulus principle, f is constant
of value f (a) on Ω0 and ∂Ω ⊇ Ω0 ∩∂Ω. The result follows.

We obtain the next corollary on the minimum modulus principle by switching to the reciprocal 1/ f (z).



MA3211 MA3211S MA4247 MA5217 COMPLEX ANALYSIS Page 57 of 95

Corollary 4.2 (minimum modulus principle). Let Ω ⊆C be a bounded open set and let f : Ω →C be a
continuous function on Ω which is holomorphic on Ω. If f does not have a zero in Ω, then for all z ∈ Ω,

| f (z)| ≥ inf
w∈Ω

| f (w)| .

Hence, if there exists a ∈ Ω such that

| f (a)|< inf
w∈Ω

| f (w)| ,

then f has a zero in Ω.

Example 4.20. Suppose f is holomorphic on a neighbourhood of D(0,1), f (0) = i and | f (z)|> 1 whenever
|z|= 1. Prove that f has a zero in D(0,1).

Solution. Suppose on the contrary that f does not have a zero in D(0,1). Then, g(z) = 1/ f (z) would be
holomorphic in a neighbourhood D(0,1). Moreover, we have |g(0)| = 1 and |g(z)| < 1 when |z| = 1. This
contradicts the maximum modulus principle. □

Theorem 4.7 (maximum and minimum principle for harmonic functions). Let Ω be a domain in C
and u be a real-valued harmonic in Ω.

(i) If u has either a local maximum or a local minimum at some point of Ω, then u is a constant on Ω.
(ii) If Ω is bounded and f is continuous up to the boundary of Ω, then

max
z∈Ω

u(z) = max
z∈bΩ

u(z) and min
z∈Ω

u(z) = min
z∈bΩ

u(z) .

Example 4.21. Find the maximal value of Re(z3) for z ∈ [0,1]× [0,1].

Solution. Note that Re(z3) is harmonic as it is the real part of a holomorphic function. Hence, it achieves its
maximal value on the boundary of the unit square. Throughout this problem, a ∈ R and a ∈ [0,1].

• Case 1 (bottom edge of square): z = a. Then, Re(z3) = a3, whose maximum is 1.
• Case 2 (top edge of square): z = a+ i. Then, Re(z3) = a3 −3a. The maximum here is 0.
• Case 3 (left edge of square): z = ai. Then, Re(z3) = 0.
• Case 4 (right edge of square): z = 1+ai. Then, Re(z3) = 1−3a2. The maximum here is 1.

Overall, the maximum value is 1 which is achieved when z = 1. □

Example 4.22 (Dinh’s 70 problems). Let a ∈ C, |a| ≤ 1, and consider the polynomial

P(z) =
a
2
+(1−|a|2)z− a

2
z2.

Prove that |P(z)| ≤ 1 whenever |z| ≤ 1.

Solution. Note that zz = 1 on |z|= 1. Consider

P(z)
z

=
a
2z

− az
2
+1−|a|2.

We have
a
2z

− āz
2

=
1
2

(
a
z
−a/z

)
.
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Let λ = a/z ∈ C. Then, λ −λ = 2i Im(λ ), so

a
2z

− āz
2

= i Im
(

a
z

)
= i Im(az).

Hence, ∣∣∣∣P(z)
z

∣∣∣∣≤ ∣∣∣i Im(az)+1−|a|2
∣∣∣

|P(z)| ≤
∣∣∣i Im(az)+1−|a|2

∣∣∣ since |z| ≤ 1

|P(z)|2 ≤ |Im(az)|2 +
(

1−|a|2
)2

We bluntly state that | Im(az)|2 ≤ |a|2, so |P(z)|2 ≤ 1−|a|2 + |a|4 ≤ 1 since |a| ≤ 1. By the maximum modulus
principle, whenever |z| ≤ 1, we have |P(z)| ≤ 1.

Now, we justify that | Im(az)|2 ≤ |a|2. Let z= x+ iy and a=α+ iβ , where x,y,α,β ∈R such that x2+y2 ≤ 1 and
α2 +β 2 ≤ 1. We have az = (α + iβ )(x− iy) = αx−βy+ i(βx−αy) so Im(az) = βx−αy. It suffices to prove
that (βx−αy)2 ≤ α2 +β 2. In other words, α2(1− y2)+β 2(1− x2)+2αβxy ≥ 0. Let x = cosθ and y = sinθ

so α2 sin2
θ +β 2 cos2 θ +2αβ cosθ sinθ ≥ 0. This inequality is obviously true since (α sinθ +β cosθ)2 ≥ 0,

or equivalently (αy+βx)2 ≥ 0. □

We then introduce the Schwarz-Pick lemma (Lemma 4.1), which is also known as the Schwarz lemma.

Lemma 4.1 (Schwarz-Pick Lemma). Let f : D→ C be a holomorphic function on D with f (D)⊆ D,
f (0) = 0 and | f (z)| ≤ 1 for each z ∈ D. Then,

for all z ∈ D | f (z)| ≤ |z| and
∣∣ f ′ (0)∣∣≤ 1.

Moreover, if there exists z ∈ D\{0} such that | f (z)|= |z| or if | f ′ (0)|= 1, then there exists c ∈ C with
|c|= 1 such that for all z ∈ D, f (z) = cz.

In the equality case of Schwarz’s lemma (Lemma 4.1), one can also interpret it as follows: if f : D→ D is
a holomorphic function which fixes the origin, then either f is a rotation i.e. there exists a constant θ ∈ R such
that f (z) = eiθ z for all z ∈ D, or f is strictly contracting towards 0 on D\{0}.

We now prove Schwarz’s lemma.

Proof. Consider the function

g : D→ C where g(z) =

 f (z)/z if z ̸= 0;

f ′ (0) if z = 0.

This function is holomorphic on D\{0}, and by the definition of the derivative f ′ (0), we have

lim
z→0

g(z)−g(0)
z−0

= lim
z→0

f (z)− f (0)− z f ′ (0)
z2 = 0.

Hence, g is holomorphic at z = 0 as well, and one has for all z ∈ D, f (z) = zg(z).

Let z ∈ D be arbitrary. Choose r > 0 such that |z| ≤ r < 1. By the maximum modulus principle on the bounded



MA3211 MA3211S MA4247 MA5217 COMPLEX ANALYSIS Page 59 of 95

region B(0,r)⊆ D (Corollary 4.1), it follows that

|g(z)| ≤ sup
w∈C(0,r)

|g(w)|= 1
r

sup
w∈C(0,r)

| f (w)| ≤ 1
r
.

Letting r → 1−, we obtain the inequality |g(z)| ≤ 1. COMPLETE PROOF OF RESULT.

Example 4.23 (Dinh’s 70 problems). Does there exist a holomorphic function f : D→D with f (1/2) = 3/4
and f ′(1/2) = 2/3?

Solution. Yes, this is simply proven using the Schwarz-Pick lemma since f ′(1/2)≤ 7/12 < 2/3. □

Example 4.24 (Dinh’s 70 problems). Let f be a holomorphic function from the unit disk D(0,1) to itself.
Assume that there is a point z0 ∈ D(0,1) such that f (z0) = z0. Prove that | f ′(z0)| ≤ 1.

Solution. We use the Schwarz-Pick Lemma, which says that for a,b ∈ D, a holomorphic function f : D→ D

satisfies f (a) = b and | f ′(a)| ≤ 1−|b|2

1−|a|2
. So, we set a = b = z0. The result follows. □

Example 4.25. Is there a holomorphic function of D(0,1) onto itself such that f (0) = 0 and f (i/4) = i/3?
Justify.

Solution. We will show that there is no such function. Suppose on the contrary that there exist such a function.
By the Schwarz Lemma, as | f (z)| ≤ |z| for z ∈D, we have | f (i/4)| ≤ |i/4|= 1/4, which is a contradiction. □

4.4
Winding Numbers

Definition 4.2 (winding number). Let γ : [a,b]→C\{z0} be a closed curve that does not pass through
z0. Given an argument θa for γ(a)− z0,

there exists a unique continuous function θ : [a,b]→ R

such that for each t ∈ [a,b], θ(t) is an argument of γ(t)− z0 and such that θ(a) = θa. Define

n(γ,z0) =
θ(b)−θ(a)

2π
to be the winding number of γ around z0.

Sometimes, we also refer it to the index of z0 with respect to γ .

Theorem 4.8. n(γ,z0) ∈ Z

Theorem 4.9. Let γ be a closed contour piecewise differentiable and z0 ∈ γ . Then,

n(γ,z0) =
1

2πi

∫
γ

1
z− z0

dz.

Corollary 4.3. Let f be holomorphic on an open set Ω containing γ and z0 ∈ f (γ). Then,

n( f ◦ γ,z0) =
1

2πi

∫
γ

f ′(z)
f (z)− z0

dz.
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Example 4.26 (Dinh’s 70 problems). Let C be the unit circle |z|= 1, anti-clockwise oriented, and let f (z) =
z3. How many times does the curve f (C) wind around the origin? Explain.

Solution. We have
n( f ◦C,0) =

1
2πi

∫
C

f ′(z)
f (z)

dz =
1

2πi

∫
C

3
z

dz = 3.

□

Example 4.27 (Dinh’s 70 problems). Let C be the unit circle |z|= 1, anti-clockwise oriented, and let f (z) =(
z2 +2

)
/z3. How many times does the curve f (C) wind around the origin? Explain.

Solution. We have

n( f ◦C,0) =
1

2πi

∫
C

f ′(z)
f (z)

dz =− 1
2πi

∫
C

z2 +6
z(z2 +2)

dz.

The residue at z = 0 is 3, so by Cauchy’s residue theorem, the answer is −3. □

Theorem 4.10 (generalised Cauchy’s integral formula). Suppose f is a holomorphic function in a
simply connected domain Ω. Then for any piecewise differentiable closed contour γ in Ω, if a ̸∈ γ ,

n(γ,z) f (a) =
1

2πi

∫
γ

f (z)
z−a

dz

Theorem 4.11 (generalised residue theorem). Let Ω be a simply connected domain in C. Suppose f
is holomorphic outside a finite number of points z1, . . . ,zN in Ω. Then, for any piecewise differentiable
closed contour γ in Ω which does not pass through z1, . . . ,zN ,

∫
γ

f (z) dz = 2πi
N

∑
k=1

n(γ,zk)Res( f ,zk).
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Chapter 5
Series

5.1
Laurent Series

Definition 5.1 (annulus). Define

Ann = {z ∈ C | R1 < |z|< R2}

to be the shaded region as follows:

R1

R2

Theorem 5.1 (Laurent expansion). If f is analytic in the annulus

Ann = {z ∈ C | R1 < |z|< R2} ,

then it has a Laurent expansion

f (z) = ∑
n∈Z

anzn where an =
1

2πi

∫
C

f (z)
zn+1 dz.

Here, C is a circle of radius R centred at the origin with R1 < R < R2.

Example 5.1.
(a) Consider the function

f (z) =
5z−3

(z+1)(z−3)
.

Find the Laurent series of f (z) for the annular domain 1 < |z|< 3.
(b) Find the value of the contour integral ∫

C

5z−3
z5(z+1)(z−3)

dz,

where C denotes the circle |z|= 2 oriented in the anticlockwise direction.
(c) Find the Laurent series of the function

10z6 −6z4

(z2 +1)(z2 −3)

in the annular domain 1 < |z|<
√

3.

Solution.
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(a) We see that

5z−3
(z+1)(z−3)

=
2

z+1
+

3
z−3

=
2
z
· 1

1+1/z
− 1

1− z/3

=
2
z

∞

∑
n=0

(−1)n(−z)n −
∞

∑
n=0

( z
3

)n

= 2
∞

∑
n=0

(−1)n

zn+1 −
∞

∑
n=0

( z
3

)n

We note that the first summation is valid for |1/z|< 1 while the second summation is valid for |z/3|< 1.
(b) We see that the contour integral is equivalent to∫

C

f (z)
z5 dz = 2πi

(
− 1

34

)
=−2πi

81
.

(c) Let us make a comparison. Perhaps we can consider f (z2). Note that

f (z2) =
5z2 −3

(z2 +1)(z−3)
.

Hence, it is clear that the function in (c) is 2z4 f (z2). Recall that the Laurent series of f in the annulus
1 < |z|< 3 is

2
∞

∑
n=0

(−1)n

zn+1 −
∞

∑
n=0

( z
3

)n

so the required answer is

4z4
∞

∑
n=0

(−1)n

z2n+2 −2z4
∞

∑
n=0

(
z2

3

)n

= 4
∞

∑
n=0

(−1)n

z2n−2 −2
∞

∑
n=0

z2n+4

3n

in the annular domain 1 < |z|<
√

3.

Example 5.2. Suppose f (z) is entire and | f (z)|> 1 when |z|> 1. Prove that f (z) is a polynomial.

Solution. Since f is entire, then in the closed unit disk, it has a finite number of zeros. Say the zeros are
z1, . . . ,zm. So, we can write

f (z) = (z− z1) . . .(z− zm)g(z) = p(z)g(z),

where g is entire with no zeros and p(z) is a polynomial of degree m. It suffices to show that g is a constant. Let
h(z) = 1/g(z) so we shall write h as the following Laurent series:

h(z) =
∞

∑
n=0

anzn where an =
1

2πi

∫
γ

h(z)
zn+1 dz

Here, we let γ be |z|= R, i.e. the circle of radius R centred at the origin. Letting z = Reiθ , the contour integral
becomes ∫ 2π

0

iReiθ h
(
Reiθ

)
Rn+1ei(n+1)θ dθ .

Let h
(
Reiθ

)
≤ kRm so it is clear that for all n > m,

lim
R→∞

|an| ≤ lim
R→∞

kRm

Rn = 0.

As such, h(z) is a constant, and g(z) is a constant. □
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Chapter 6
Residue Theory

6.1
Introduction

We adopt an alternative representation for the annulus Ann(z0,R1,R2), so if f (z) is analytic in this annulus,

f (z) =
∞

∑
n=0

an(z− z0)
n +

∞

∑
n=1

bn

(z− z0)n ,

where
an =

1
2πi

∫
C

f (s)
(s− z0)n+1 ds and bn =

1
2πi

∫
C

f (s)
(s− z0)−n+1 ds

and C is any positively oriented simple closed contour around z0 lying inside Ann(z0,R1,R2).

Definition 6.1 (principal part of Laurent series). The sum

∞

∑
n=1

bn

(z− z0)n is the principal part of f (z) at z0.

Theorem 6.1 (removable singularity). If bn = 0 for all n∈N, then z0 is a point of removable singularity
of f (z). Thus, the Laurent series of f (z) is

f (z) =
∞

∑
n=0

an(z− z0)
n where 0 < |z− z0|< R.

Example 6.1. The singular point z = 0 of sinz/z is a removable singularity. We have

sinz
z

=
1
z

∞

∑
n=0

(−1)n

(2n+1)!
z2n+1 = 1− z2

3!
+

z4

5!
− . . .

where 0 < |z|< ∞. This asserts that our claim is true.

Example 6.2 (Dinh’s 70 problems). Let f (z) be holomorphic in C\{0} and suppose that∫
|z|=1

zn f (z) dz = 0 for any n ∈ Z≥0.

Show that f has a removable singularity at z = 0.

Solution. f has a Laurent series representation around z = 0. Write

f (z) = ∑
k∈Z

akzk

so the integral becomes ∫
|z|=1

zn
∞

∑
k=−∞

akzk dz = 0

∞

∑
k=−∞

∫
|z|=1

akzn+k dz = 0
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since that the series converges uniformly on compact sets away from the singularity. Note that∫
|z|=1

zk dz = 0 for all k ̸=−1.

As such, n+k =−1. Since n ≥ 0, it forces the inequality k ≤−1, which implies that ak = 0 for all k ≤−1, i.e.

∞

∑
k=−1

∫
|z|=1

akzn+k dz = 0.

It is clear that a−1 = 0. With all coefficients of negative powers being zero, it shows that f (z) has a removable
singularity at z = 0. □

Definition 6.2 (essential singularity). If bn ̸= 0 for infinitely many n, then z0 is a point of essential
singularity of f (z). In this case, some of the bn’s may be zero.

Example 6.3. The point z = 0 of exp(1/z) is an essential singularity as

exp
(

1
z

)
=

∞

∑
n=0

1
n!zn = 1+ z−1 +

1
2!

z−2 +
1
3!

z−3 + . . .

where 0 < |z|< ∞.

Definition 6.3 (pole). If there exists m ∈ N such that bm ̸= 0 but bn = 0 for all n > m so that

f (z) =
∞

∑
n=0

an(z− z0)
n +

m

∑
n=1

bn

(z− z0)n ,

then z0 is a pole of order m of f (z). If m = 1, z0 is a simple pole of f (z); if m = 2, z0 is a double pole of
f (z).

Example 6.4. Consider the point z = 1 of

f (z) =
1

(z−1)2 + z.

We can rewrite it as

f (z) =
1

(z−1)2 +1+(z−1)

Hence, z = 1 is a double pole.

Example 6.5 (MA5217 AY24/25 Sem 1 Homework 1). Find all the singularities in C of the following
function f (z) and their types where

f (z) =
z2 +3z+2
z(z4 −1)

e1/z2
.

Solution. Consider the term z4 −1 in the denominator of f (z). Then, z4 −1 = (z2 +1)(z2 −1) = (z2 +1)(z+
1)(z−1). Also, the numerator can be factorised as (z+2)(z+1). Also, consider

e1/z2

z
=

∞

∑
n=0

(
1
z2

)n 1
n!

· 1
z
=

∞

∑
n=0

1
z2n+1n!

.

So, f (z) has simple poles at z = 1,z = i,z =−i, a removable singularity at z =−1, and an essential singularity
at z = 0. □
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Theorem 6.2 (residue theorem). Let C be a positively oriented simple closed contour within and on
which a function f is analytic except for a finite number of singular points z1,z2, . . . ,zn interior to C. Let
Res( f ,ak) denote the residue of f at ak, for all 1 ≤ k ≤ n. Then,∫

C
f (z) dz = 2πi

n

∑
k=1

Res( f ,ak).

Theorem 6.3. If f is analytic everywhere on the finite plane except for a finite number of singular
points interior to a positively oriented simple closed contour C, then∫

C
f (z) dz = 2πiRes

(
1
z2 f

(
1
z

)
,0
)
.

Example 6.6 (Dinh’s 70 problems). Evaluate the integral∫
C+(0,2)

ee1/z
dz.

Solution. Let w = 1/z so dw/dz =−w2. The integral becomes∫
C+(0,1/2)

eew · dw
w2 .

Let f (w) = eew
. By the residue theorem,∫

C+(0,1/2)

f (w)
w2 dw = 2πiRes( f (w),0) = 2πie

and we are done. □

6.2
Residue Computation Methods

There are three methods for computing residues.

Theorem 6.4 (method 1). Suppose for z near z0, f (z) can be written as

f (z) =
φ(z)
z− z0

,

where φ(z) is analytic at z0 and f has a simple pole or a removable singularity at z0. Then,

Res
z=z0

f (z) = φ(z0).

Proof. Since φ(z) is analytic at z0, then by Taylor’s theorem, for z near z0,

φ(z) = φ(z0)+φ
′(z0)(z− z0)+ . . .

so the Laurent series of f (z) at z0 is

f (z) =
φ(z)
z− z0

=
φ(z0)+φ ′(z0)(z− z0)+ . . .

z− z0
=

φ(z0)

z− z0
+φ

′(z0)+ . . .

and the result follows.
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Theorem 6.5 (method 2). Suppose for z near z0, f (z) can be written as

f (z) =
φ(z)

(z− z0)m ,

where φ(z) is analytic at z0 and m ≥ 1. Then,

Res
z=z0

f (z) =
φ (m−1)(z0)

(m−1)!
.

Proof. It is inferred that f has a pole of order less than or equal to m or a removable point of singularity at z0.
Observe that when m = 1, it is just method 1 (recall Theorem 6.4). Using Taylor’s theorem again, the series
expansion of φ(z) is the same as before. That is,

φ(z) = φ(z0)+φ
′(z0)(z− z0)+ . . .

so

f (z) =
φ (z)

(z− z0)
m

=
1

(z− z0)
m

[
φ (z0)+ . . .+

φ (m−1) (z0)

(m−1)!
(z− z0)

m−1 + . . .

]

=
φ (z0)

(z− z0)
m + . . .+

φ (m−1) (z0)

(m−1)!
· 1

z− z0
+ . . .

The result follows.

Theorem 6.6 (method 3). If p(z) and q(z) are analytic at z0 and q(z) has a simple zero at z0 (i.e.
q(z0) = 0 but q′(z0) ̸= 0), then

Res
z=z0

p(z)
q(z)

=
p(z0)

q′(z0)
.

Theorem 6.7 (method 4). If all the above methods fail, use the Laurent series of f (z) and read b1.

Example 6.7. For the following function f (z), find all of its singularities in C, their types and residues at
these points:

f (z) =
z2 +1
z6 +1

.

Solution. The singularities of f (z) are the zeros of the denominator z6 +1, that is the 6 points

zk = exp
(

iπ
6
+

kπi
3

)
,

where 0 ≤ k ≤ 5. These points are simple zeros of z6 + 1 = 0. The points z1 = i and z4 = −i are the roots of
the equation z2+1= 0 (refer to the numerator). Thus, z1,z4 are removable and z0,z2,z3,z5 are simple poles of f .

So, the residues of f at z1,z4 are 0, whereas the residue of f at zk for k = 0,2,3,5 is equal to (z2
k +1)/6z5

k . □

Example 6.8 (classic result). Prove that ∫
∞

−∞

cosx
x2 +1

dx =
π

e
.
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Solution. We consider

f (z) =
eiz

z2 +1

so the integral Re( f (z)) over the real numbers is the required answer. Let C be the path C1 +C2, where C1 and
C2 are parametrised as follows:

C1(t) = t, where t ∈ [−r,r]

C2(t) = reit , where t ∈ [0,π]

r x

y

O

C1

C2

−r

i

By Cauchy’s residue theorem,

∑Res( f (z)) =
1

2πi

∫
C

f (z) dz.

Only one of the two poles of f (z), z = i, is inside C as we are considering the upper half of the circle centred at
the origin. We have ∫

C
f (z) dz =

∫
C1

eiz

z2 +1
dz+

∫
C2

eiz

z2 +1
dz.

For the integral over C1, applying the parametrisation,∫
C1

eiz

z2 +1
dz =

∫ r

−r

eit

t2 +1
dt =

∫ r

−r

cos t
t2 +1

dt + i
∫ r

−r

sin t
t2 +1

dt.

Since sin t is an odd function, then the integral of sin t/(t2 +1) is zero. Hence,∫
C1

eiz

z2 +1
dz =

∫ r

−r

cos t
t2 +1

dt.

As for the integral over C2, applying the parametrisation,

∫
C2

eiz

z2 +1
dz =

∫
π

0

exp
(
ireit
)

r2ei2t +1
· ireit dt.

By applying Euler’s Formula,

∫
π

0

exp
(
ireit

)
r2ei2t +1

· ireit dt = ir
∫

π

0

ei(t+r cos t)e−r sin t

r2ei2t +1
dt∣∣∣∣∣

∫
π

0

exp
(
ireit

)
r2ei2t +1

· ireit dt

∣∣∣∣∣= r
∫

π

0

e−r sin t

|r2ei2t +1|
dt

≤ r
r2 −1

∫
π

0
e−r sin t dt

Let the radius r of the semicircle tend to infinity so it is then clear that∫
C2

eiz

z2 +1
dz = 0.
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Therefore, by Cauchy’s residue theorem (rearrange the equation at the start of our solution),∫
∞

−∞

cos t
t2 +1

dt = 2πi · ei2

2i
=

π

e
.

□

Example 6.9 (branch cut). Prove that∫
∞

0

√
x

x2 +5x+6
dx = π(

√
3−

√
2).

Solution. Note that 0 is a branch point of
√

z. So,
√

z has a branch cut along the positive real axis, i.e. [0,∞).
Hence,

√
z is analytic on C\ [0,∞). We adopt the following keyhole contour.

ε r
x

y

O

−Cε

Cr

C1

−C2
−r

ir

−ir

One should think of the above contour as having ε so small that C1 and C2 are essentially on the x-, or rather,
real axis. Let the region the contour encloses be D. Then, we shall consider the integral over the boundary (this
is denoted by ∂D). That is, ∫

∂D

√
z

z2 +5z+6
dz.

By Cauchy’s residue theorem,∫
∂D

√
z

z2 +5z+6
dz = 2πi

[ √
z

2z+5

∣∣∣∣
z=−3

+

√
z

2z+5

∣∣∣∣
z=−2

]
= 2π

(√
3−

√
2
)
.

We now evaluate the contour integral by considering the different pieces.∫
∂D

√
z

z2 +5z+6
dz =

∫
Cr

−
∫

Cε

+
∫

C1

−
∫

C2

=
∫

Cr

−
∫

Cε

+2
∫ r

ε

√
x

x2 +5x+6
dx

By the estimation lemma, ∣∣∣∣∫Cr

f (z) dz
∣∣∣∣≤ 2πr ·

√
r

r2 −5r−6
which tends to 0 as r tends to infinity. In a similar fashion, one can prove that∣∣∣∣∫Cε

f (z) dz
∣∣∣∣≤ 2πε ·

√
ε

6−5ε − ε2

which tends to 0 too as ε tends to 0. As such,

2π

(√
3−

√
2
)
= 2

∫
∞

0

√
x

x2 +5x+6
dx

and the result follows. □
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Example 6.10 (pizza contour). Prove that for n ≥ 2,∫
∞

0

1
xn +1

dx =
π

nsin
(

π

n

) .
Solution. Let

f (z) =
1

zn +1
and the required integral to be I. Consider the following parametrisation (informally known as the pizza
contour):

C1(t) := t, where 0 ≤ t ≤ R

C2 : |z|= R (note that the angle subtended by the arc does not matter)

C3(t) := (R− t)exp
(

2πi
n

)
, where 0 ≤ t ≤ R

x

y

O

e
iπ
n

e
2iπ
n

RC1

C2

C3

By defining C to be the contour, it is clear that∫
C

1
zn +1

dz =
∫

C1

+
∫

C2

+
∫

C3

.

Only the pole z = eiπ/n is in C so by the residue theorem,∫
C

1
zn +1

dz = 2πi Res
z=eiπ/n

f (z) =−2πi
n

exp
(

iπ
n

)
.

We focus on C1. ∫
C1

1
zn +1

dz =
∫ R

0

1
tn +1

dt.

Letting R tend to infinity, and since t is a dummy variable, it is easy to see that∫
C1

1
zn +1

dz =
∫

∞

0

1
xn +1

dx = I.

For C2, by the triangle inequality, |zn +1| ≥ ||zn|− |−1||= |Rn −1|. Hence,∣∣∣∣∫C2

1
zn +1

dz
∣∣∣∣≤ ∫C2

1
Rn −1

dz =
cπR

Rn −1
.

Letting R tend to infinity, we see that the integral over C2 is zero. Earlier, we mentioned that the angle subtended
by the arc does not matter and we affirm this statement here.
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The integral over C3 is more complicated. Using the substitution

z = (R− t)exp
(

2πi
n

)
,

we see that ∫
C3

1
zn +1

dz =−exp
(

2πi
n

)∫ R

0

1
(R− t)n +1

dt.

This calls for a substitution, say u = R− t. Hence, the integral over C3 becomes

−exp
(

2πi
n

)∫ R

0

1
un +1

du R→∞−−−→−exp
(

2πi
n

)∫
∞

0

1
xn +1

dx =−I exp
(

2πi
n

)
.

To conclude,

−2πi
n

exp
(

iπ
n

)
= I
[

1− exp
(

2πi
n

)]

I =−2πi
n

·
exp
(

iπ
n

)
1− exp

(
2πi
n

)

=−2πi
n

·
exp
(

iπ
n

)
exp
(

iπ
n

)
exp
(
− iπ

n

)
− exp

(
iπ
n

)
exp
(

iπ
n

)
=

π

nsin
(

π

n

)
so we have finally derived this beautiful result. □

Example 6.11. Prove that ∫ 2π

0

1
5+3sinθ

dθ =
π

2
.

Solution. Set z = eiθ so sinθ = (z− z−1)/2i. The integral becomes∫
|z|=1

1

5+3
(

z− z−1

2i

) ·
(
− i

z

)
dz = 2

∫
|z|=1

1
3z2 +10iz−3

dz.

Let
f (z) =

1
3z2 +10iz−3

.

It has two simple poles z1 =−i/3 and z2 =−3i. The first one is interior to the circle |z|= 1 so we shall consider
this. By the residue theorem, the answer is

2 ·2πi · 1
3(z1 +3i)

=
π

2
.

□

Example 6.12. Prove that ∫
∞

0

(logx)2

x2 +1
dx =

π3

8
.

Solution. We consider the following contour.
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ε R x

y

O

Cε

CR

−R −ε

Define

f (z) =
(logz)2

z2 +1
and in our contour, say C, we let 0 < ε < 1 < R. logz denotes the branch of the logarithm function defined on
{z ∈ C : −π/2 < argz < 3π/2}. Hence, it is clear that∫

C
=
∫

CR

+
∫ −ε

−R
+
∫

Cε

+
∫ R

ε

.

By the residue theorem, ∫
C

(logz)2

z2 +1
dz =

(log i)2

2i
=−π3

4
.

Now, let us focus on CR. We use the estimation lemma to help us.∣∣∣∣∫CR

∣∣∣∣≤ πR · (logR+ iθ)2

R2 −1

which tends to 0 as R tends to infinity. In a similar fashion, one can show that

lim
ε→0

∫
Cε

= 0.

As such, ∫
C

(logz)2

z2 +1
dz =

∫ −ε

−R

(logz)2

z2 +1
dz+

∫ R

ε

(logz)2

z2 +1
dz

=
∫ R

ε

(log(−z))2

z2 +1
dz+

∫ R

ε

(logz)2

z2 +1
dz

=
∫ R

ε

(iπ + logz)2 +(logz)2

z2 +1
dz

Now we set R to tend to infinity and ε to tend to 0. Also, we computed the value of the integral over C earlier
so putting everything together,

−π3

4
=
∫

∞

0

(iπ + logz)2 +(logz)2

z2 +1
dz

=−π
2
∫

∞

0

1
z2 +1

dz+2iπ
∫

∞

0

logz
z2 +1

dz+2
∫

∞

0

(logz)2

z2 +1
dz

=−π3

2
+2iπ

∫
∞

0

logz
z2 +1

dz+2
∫

∞

0

(logz)2

z2 +1
dz

Lastly, we will show that ∫
∞

0

logx
x2 +1

dx = 0.

Using the substitution u = 1/x,∫
∞

0

logx
x2 +1

dx =
∫

∞

0

− logu

(1/u)2 +1
·
(
−1

u

)2

du =−
∫

∞

0

logu
u2 +1

du

and the result follows. □
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We have the following beautiful corollary:

Corollary 6.1. Let

I2n =
∫

∞

0

(logx)2n

x2 +1
dx.

Then for all n ≥ 1, I2n satisfies the recurrence relation

I2n =
(−1)nπ2n+1

22n+1 − 1
2

n

∑
k=1

(
2n
2k

)
(−1)k

π
2kI2n−2k.

It is not surprising that we only discuss the integrals I2n instead of I2n+1 because

∫
∞

0

(logx)2n+1

x2 +1
dx = 0

for all n ≥ 0 by performing the substitution u = 1/x.

The above formula is also equivalent to the following by using the Dirichlet beta function:

Definition 6.4 (Dirichlet beta function). Define the Dirichlet beta function to be

β (s) =
∞

∑
n=0

(−1)n

(2n+1)s .

Corollary 6.2. Let

I2n =
∫

∞

0

(logx)2n

x2 +1
dx.

Then for all n ≥ 1, I2n = 2(2n)!β (2n+1).

Proof.

∫
∞

0

(logx)2n

x2 +1
dx =

∫ 1

0

(logu)2n

u2 +1
du using u =

1
x∫

∞

0

(logx)2n

x2 +1
dx = 2

∫ 1

0

(logx)2n

x2 +1
dx

= 2
∫ 1

0
(−1)k

∞

∑
k=0

(logx)2nx2k dx using integration by parts

= 2(2n)!
∞

∑
k=0

(−1)k

(2k+1)2n+1

and the result follows.

Example 6.13 (Dinh’s 70 problems). Show that

∫
∞

0

xα

(1+ x2)2 dx =
π (1−α)

2cos
(

πα

2

)
for −1 < α < 3, α ̸= 1. What happens if α = 1?
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Solution. We consider the following contour.

ε R x

y

O

Cε

CR

−R −ε

Here, 0 < ε < R and CR and Cε denote the upper-half of the semicircle of radius R and ε respectively. So,∫
C

f (z) dz =
∫

CR

+
∫ −ε

−R
+
∫

Cε

+
∫ R

ε

.

By the residue theorem, it is clear that ∫
C

f (z) dz =
iπeiaπ/2

2
.

It is clear that

lim
R→∞

∫
CR = 0 and lim

ε→0

∫
Cε = 0.

So, ∫ −ε

−R
+
∫ R

ε

=
∫

C
f (z) dz

and the result follows. □

Example 6.14 (MA5217 AY24/25 Sem 1 Homework 1). Compute the following integrals using the residue
formula: ∫

∞

−∞

x−4
(x2 −4x+5)(x2 +4)

dx and
∫

∞

0

x2

(x2 +4)2 dx

Solution. We deal with the first integral. Note that z = 2+ i,z = 2− i,z = 2i,z = −2i are simple poles of the
integral. Let C = C1 +C2 be the upper half of the semicircle of radius R centred at the origin on the complex
plane, where C1 is the diameter and C2 is the arc.

So,

C1 = {z = x+ iy ∈ C : −R ≤ x ≤ R}

C2 =
{

z = x+ iy ∈ C : z = Reiθ ,0 ≤ θ ≤ π

}
Let f (z) denote the integrand. We are only interested in the poles interior and on the boundary of C. By the
residue theorem, ∫

C
f (z) dz = 2πi∑Res( f (z),z = zk) = 2πi

(
2i
13

)
=−4π

13

Hence, ∫
C1

f (z) dz =
∫ R

−R

x−4
(x2 −4x+5)(x2 +4)

dx.
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Letting R → ∞, we see that we obtain the original integral. Also,∣∣∣∣∫C2

f (z) dz
∣∣∣∣= ∣∣∣∣∫ π

0

Reiθ · iReiθ

(R2e2iθ −4Reiθ +5)(R2e2iθ +4)
dθ

∣∣∣∣
=

∣∣∣∣∫ π

0

R2

(R2e2iθ −4Reiθ +5)(R2e2iθ +4)
dθ

∣∣∣∣
which is equal to 0 by the triangle inequality. Hence, the answer is −4π/13.

For the second integral, we note that the function is even. Letting g denote the integrand, we have∫
∞

0
g(z) dz =

1
2

∫
∞

−∞

g(z) dz.

We consider the same contour as the previous part, acknowledging that z = ±2i are double poles of g. So, it
follows that the sum of residues is −π/8, and by some tedious computation, the integral evaluates to π/8.

To compute the residue of the double pole z = 2i, we use the formula

lim
z→2i

d
dz

(
(z−2i)2g(z)

)
which is quite easy. □

Example 6.15 (Dinh’s 70 problems). Evaluate∫
∞

−∞

xsinx
(1+ x2)2 dx.

Solution. Let f (z) =
zeiz

(1+ z2)2 . Define C1 to be the upper half of the semicircle of radius R centred at the origin

and C2 to be the real axis bounded by ±R. So, C1 can be parametrised using z = Reit for t ∈ [0,π], whereas C2

can be parametrised using z = t for t ∈ [−R,R]. Let C =C1 ∪C2. By the residue theorem,∫
C

f (z) dz = 2πiRes( f (z), i).

Note that

Res( f (z), i) = lim
z→i

d
dz

(
zeiz

(z+ i)2

)
=

1
4e

.

Hence, ∫
C

f (z) dz =
iπ
2e

.

Now,

lim
R→∞

∣∣∣∣∫C1

f (z) dz
∣∣∣∣= lim

R→∞

∣∣∣∣∣R2
∫

π

0

1

(1+R2e2iθ )
2 dθ

∣∣∣∣∣= 0.

Lastly, we work with C2. So, we have

lim
R→∞

∫
C2

f (z) dz = lim
R→∞

∫ R

−R

t sin t

(1+ t2)2 dt =
∫

∞

−∞

xsinx

(1+ x2)2 dt.

It follows that the answer is π/2e. □

Example 6.16 (Dinh’s 70 problems). Show that for any 0 < a < 1,∫
∞

0

xa

x(1+ x)
dx =

π

sin(aπ)
.
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Solution. Let t = x/(1+ x), so

x =
t

1− t
and

dx
dt

=
1

(1− t)2 .

The integral becomes∫ 1

0
ta−1(1− t)−a dt = B(a,1−a) by definition of beta function

=
Γ(a)Γ(1−a)

Γ(1)
by relationship with gamma function

= Γ(a)Γ(1−a)

and the result follows by Euler’s reflection formula. □
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Chapter 7
Conformal Mappings and Möbius Transformations

7.1
The Extended Complex Plane

Definition 7.1 (extended complex plane). Define

C∗ = C∪{∞} to be the extended complex plane (also known as the Riemann sphere).

This is also denoted by C∞.

We represent C∗ as the unit sphere S2 in R3, i.e.

S2 =
{
(ξ ,η ,ζ ) ∈ R3 : ξ

2 +η
2 +ζ

2 = 1
}
.

Let N = (0,0,1) denote the north pole on S2. We then identify C with {(ξ ,η ,0) : ξ ,η ∈ R} = {ζ = 0} in
R3 so that C cuts S2 along the equator. Thus, we obtain the following diagram (Figure 2) which is known as
stereographic projection.

z = 0

z = x+ iy

z = (ξ ,η ,ζ )

N = (0,0,1)

Figure 2: Stereographic projection

In Figure 2, C∗ is represented as the sphere S2.

Proposition 7.1. If z = x+ iy in C corresponds to z = (ξ ,η ,ζ ) in Σ, then

ξ =
2x

|z|2 +1
and η =

2y

|z|2 +1
and ζ =

|z|2 −1

|z|2 +1
.

Proof. For t ∈ R, we can parametrise the line Nz using (tx, ty,1− t). Substituting this into the equation of the
sphere S2, we have

t2 (x2 + y2)+(1− t)2 = 1.
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This is a quadratic equation in t for points in NZ ∩S2 with a known root t = 0 corresponding to N (recall that
when t = 0, then x = y = 0 and 1− t = 1). One can then use the quadratic formula to deduce that the other root
is

t =
2

x2 + y2 +1
=

2

|z|2 +1
corresponding to z.

As such,

z =

(
2x

|z|2 +1
,

2y

|z|2 +1
,
|z|2 −1

|z|2 +1

)

as mentioned.

7.2
Univalent Functions

Definition 7.2 (univalent function). Let f : Ω → C be a holomorphic function. Then, f is univalent if
it is injective. Moreover, f is locally univalent if, for each z0 ∈ Ω, there exists a neighbourhood U of z0

such that f |U→ C is injective.

Theorem 7.1. A holomorphic function f : Ω → C

locally univalent at z0 if and only if f ′ (z0) ̸= 0.

Corollary 7.1 (inverse function theorem). If f : Ω → C is a univalent holomorphic function, then its
inverse f−1 is also holomorphic defined on f (Ω). Moreover, for each z ∈ Ω,

( f−1)′( f (z)) =
1

f ′(z)
.

Definition 7.3. Suppose two curves γ and η intersect at z0 and α is the oriented angle between the
tangent vectors to these curves at z0. A holomorphic map f preserves angles at z0 if the image curves
f ◦ γ and f ◦η intersect at f (z0) and their tangent vectors at f (z0) form an angle equal to α .

Theorem 7.2. Suppose f : Ω → C is holomorphic and f ′(z0) ̸= 0. Then, f preserves angles at z0.

Definition 7.4 (conformal map and automorphism group). A bijective holomorphic function f : U →
V is a conformal map or a biholomorphism. A conformal map from a domain Ω → Ω is a conformal
automorphism of Ω. Define Aut(Ω) to be the set of conformal automorphisms of Ω.

Theorem 7.3. If f and g are automorphisms of Ω, then f ◦g is also an automorphism.

Theorem 7.3 is a standard exercise from MA2202.
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7.3
Möbius Transformations

Definition 7.5 (Möbius transformation). Let a,b,c,d ∈ C. Then, the map

T : C∗ → C∗ where T (z) =
az+b
cz+d

such that T (∞) =
a
c

and T
(
−d

c

)
= ∞

is called a linear fractional transformation. If we further impose that ad −bc ̸= 0, then T is said to be a
Möbius transformation.

Note that the condition ad −bc ̸= 0 is equivalent to saying T is not constant. Consider

T (z) =
az+b
cz+d

where a,b,c,d ∈ C and ad −bc ̸= 0.

If c = 0, then T : C∗ → C∗; If c ̸= 0, then T : C∗ \ {−d/c} → C∗. Moreover, there exists a bijection from the
set of linear transformations of C2, i.e. L

(
C2,C2

)
, to the set of two-by-two complex invertible matrices, i.e.

GL2 (C) (recall that GLn (F) is known as the general linear group of n×n matrices, which must be invertible,
over some field F) — each matrix corresponds to the transformation it induces via left multiplication. As such,
for any

M =

[
a b
c d

]
∈ GL2 (C) there exists z ∈ C such that M

[
z
1

]
=

[
az+b
cz+d

]
.

Proposition 7.2. The set of Möbius transformations forms a group under composition.

Proof. Consider the map

GL2 (C)→ set of Möbius transformations where

[
a b
c d

]
7→
(

z 7→ az+b
cz+d

)
.

This is a well-defined map. One can tediously prove that this is a group homomorphism, i.e. take any[
a b
c d

]
,

[
p q
r s

]
∈ GL2 (C) for which

[
a b
c d

][
p q
r s

]
=

[
ap+br aq+bs
cp+dr cq+ds

]
.

On the other hand, for any w,z ∈ C, the composition of the maps

(
w 7→ aw+b

cw+d

)
◦
(

z 7→ pz+q
rz+ s

)
= z 7→

a
(

pz+q
rz+d

)
+b

c
(

pz+q
rz+d

)
+d

=
(ap+br)z+(aq+bs)
(cp+dr)z+(cq+ds)

.

As such, indeed, the map is a homomorphism. Moreover, the homomorphism is surjective by Definition 7.5. We
then compute the kernel of this homomorphism. Consider the set of all matrices in GL2 (C) which get mapped
to the identity in the codomain, i.e. the identity transformation z 7→ z. In other words,

ker of homomorphism =

{[
a b
c d

]
∈ GL2 (C) : az+b = cz2 +dz for all z ∈ C

}
.

This forces b = c = 0 and a = d, so we obtain diagonal matrices (in fact the matrix is a scalar matrix since the
diagonal entries are the same) in GL2 (C). That is,

ker of homomorphism =

{[
λ 0
0 λ

]
∈ GL2 (C) : λ ∈ C×

}
.
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Recall from MA2001 that diagonal matrices over R commute with any other matrix — we can extend this to
C as well. Moreover, recall from MA2202 that the kernel is precisely the center of GL2 (C)! Perhaps readers
with more knowledge on Group Theory would know that the quotient of the general linear group with its center
would yield a special kind of group known as the projective linear group! In particular,

GL2 (C)/Z (GL2 (C)) = PGL2 (C) .

We call this the Möbius group.

We take some time to appreciate some subgroups of PGL2 (C) (Proposition 7.3). Essentially, the proposition
shows that every Möbius transformation can be expressed as a composition of specific types of linear fractional
transformations, each of which forms a subgroup of PGL2 (C).

Proposition 7.3. A Möbius transformation is a composition of transformations of the following forms:
(i) Translation: For any a ∈ C, z 7→ z+a, which corresponds to the matrix[

1 a
0 1

]
where a ∈ C

(ii) Scaling: For any a ∈ R>0, z 7→ az, which corresponds to the matrix[
a 0
0 1

]
where a ∈ R>0

(iii) Rotation: For any θ ∈ R, z 7→ eiθ z which corresponds to the matrix[
eiθ 0
0 1

]
where θ ∈ R

(iv) Reciprocation: z 7→ 1/z, which corresponds to the matrix[
0 1
1 0

]

Proposition 7.4. If T is a Möbius transformation, then T is the composition of translations, dilations,
and the inversion.

Proof. Suppose we are given some matrix [
a b
c d

]
∈ GL2 (C)

which corresponds to some Möbius transformation in PGL2 (C). If c = 0, then both a and d must be non-zero
since the determinant of the matrix must be 1. As such,[

a b
c d

]
=

[
a b
0 d

]
=

[
1 b/d
0 1

][
a/d 0

0 1

][
d 0
0 d

]

Strictly speaking, we should not treat the teal and orange matrices as representing scaling and rotation
independently; instead, they should be understood as a single composite transformation combining both effects.
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On the other hand, if c ̸= 0, then[
a b
c d

]
=

[
1 a/c
0 1

][
a/d 0

0 1

][
1/c 0
0 c

][
0 1
1 0

][
1 d/c
0 1

]

which completes the proof.

Example 7.1. Translations, rotations, and dilations are examples of automorphisms of the complex plane. We
only discuss translations here. Suppose h ∈ C. Then, the translation

z 7→ z+h is a conformal map C→ C whose inverse is w 7→ w−h.

Moreover, if h ∈ R, this translation is also a conformal map from the upper half-plane H to itself.

Proposition 7.5. A Möbius transformation, except for the identity, has exactly 1 or 2 fixed points in
C∗.

Corollary 7.2. If a Möbius transformation T has ≥ 3 fixed points in C∗, then T is the identity
transformation.

Proof. Suppose

T (z) =
az+b
cz+d

is not the identity transformation.

Then, for c ∈ Z, we note that

T (z) = z if and only if
az+b
cz+d

= z if and only if cz2 +(d −a)z+b = 0.

If c ̸= 0, then this quadratic equation has at most 2 distinct roots in C by the fundamental theorem of algebra.
Also, S (∞) = a/c ̸= ∞, so T has at most 2 fixed points, and both are in C. On the other hand, if c = 0, then
T (∞) = a/c = ∞ and for z ∈ C, we have

T (z) = z if and only if z =
b

d −a
.

Of course, this expression lies in C if a ̸= d. If a = d, then

T (z) = z+
b
d

has no fixed points in C

so T has 1 fixed point at ∞ and at most 1 fixed point in C.

It is a well-known fact that three points in the plane determine a circle. A circle in C∗ passing through ∞

corresponds to a straight line in C. A straight line in the plane will be called a circle in C∗.

Lemma 7.1 (generalised circle). Let

L =
{

z ∈ C∗ : α |z|2 +β Re(z)+ γ Im(z)+δ = 0 where α,β ,γ,δ ∈ R satisfy β
2 + γ

2 −4αδ > 0
}
.

The condition β 2 + γ2 −4αδ > 0 is known as non-degeneracy.
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(i) If α ̸= 0, then L is a circle with

centre
(
− β

2α
,− γ

2α

)
and radius r =

√
β 2 + γ2 −4αδ

4α2

(ii) if α = 0, then L is a line
Conversely, every circle or (non-vertical) line in the complex plane can be expressed in the form above
(possibly after a rotation or a translation).

Theorem 7.4 (preservation of circles). A Möbius transformation takes circles onto circles.

Proof. Recall that any linear fractional transformation is a composition of a translation, a dilation, a rotation
and an inversion. It suffices to check that the inversion z 7→ 1/z preserves circles in C∗. Note that any circle in
C∗ is the solution set of

α |z|2 +β Re(z)+ γ Im(z)+δ = 0 where α,β ,γ,δ ∈ R.

Since
1
z
=

z
zz

=
z

|z|2
,

under inversion, the solution gets mapped to

α

|z|2
+β · Re(z)

|z|2
− γ · Im(z)

|z|2
+δ = 0 or equivalently δ |z|2 − γ Im(z)+β Re(z)+α = 0.

The result follows.

Example 7.2. For a ∈ D,

Ta : D→ D where Ta(z) =
−z+a
1−az

and Ta (0) = a.

To see why, note that T is a holomorphic function on C\{1/a}, so it is defined in a neighbourhood of D. For
z in the boundary of D, we have |z|= 1 and zz = 1. It is easy to see that |Ta(z) = 1. By the maximum modulus
principle, when |z|< 1, we have |Ta(z)|< 1. Hence, Ta(z) is a conformal automorphism of D.

Also, Ta(0) = a is obvious.

Example 7.3. We shall analyse the linear fractional transformation

T (z) =
z+ i
z− i

.

It is clear that
−i 7→ 0 i 7→ ∞ 0 7→ −1.

As such, T maps iR∪{∞} to R∪{∞}. In other words, C∗ \ iR is mapped to C∗ \R. Note that

C∗ \ iR= {z : Re(z)< 0}⊔{z : Re(z)> 0} which is the disjoint union of connected sets and

C∗ \R= {z : Im(z)> 0}⊔{z : Im(z)< 0} which is the disjoint union of connected sets

Test on say z =−1. Then, T (−1) =−i. Note that −1 ∈ {z : Re(z)< 0} and −i ∈ {z : Im(z)< 0}. So, T maps

{z : Re(z)< 0} bijectively onto {z : Im(z)< 0} and {z : Re(z)> 0} bijectively onto {z : Im(z)> 0}.
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As an example, say we restrict the domain to the unit disc D. Then,

i 7→ ∞ − i 7→ 0 − i 7→ −i.

So, T : ∂D→ iR. Equivalently,

T : D⊔
(
C∗ \D

)
→{z : Re(z)< 0}⊔{z : Re(z)> 0}.

Take 0 ∈ D, which gets mapped to −1 ∈ {z : Re(z)< 0}. We conclude that T maps D onto {z : Re(z)< 0}.

Example 7.4.
T (z) = i · z−1

z+1
maps the real line to the imaginary line and T (−1) = ∞.

To see why, let z = a, where a ∈ R. Then,

T (z) =
i(a−1)

a+1
,

which is purely imaginary. It is also clear that T (−1) = ∞.

Example 7.5.
T (z) =

i− z
i+ z

maps the real line to the unit circle and T (∞) =−1.

To see why, let z = a, where a ∈ R. It suffices to show that |T (a)|= 1, i.e.∣∣∣∣ i−a
i+a

∣∣∣∣= 1.

This is obvious.

Example 7.6.
T (z) = i · 1− z

1+ z
maps the unit circle to the real line and T (−1) = ∞.

To see why, let z = eiθ . Then, we need to show that T (z) ∈ R.

T (eiθ ) =
i(1− eiθ )

1+ eiθ = tan
(

θ

2

)
,

which is real. Also, T (−1) can be attained by setting θ = (2k+1)π for k ∈ Z, which implies tan(θ/2) = ∞.

Example 7.7. Find a conformal map f from A = {z ∈ C| Im(z)> 0, |z|> 1} onto the unit disc.

Solution. The locus A represents the intersection of the upper half-plane and the points exterior to the circle of
radius 1 centred at the origin.

A

1
Re(z)

Im(z)
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Consider the Cayley transform given by f (z) = (z− i)/(z+ i). □

Example 7.8. Let

A =

{
z ∈ C : |z|< 1 and Im(z)>

1
2

}
and B =

{
2π

3
< arg(z)< π

}
.

Find a conformal map f from A to B.

Solution. We first find the intersection of |z|= 1 and Im(z) = 1/2. Consider x2 + y2 = 1 and y = 1/2. Solving
yields x =−

√
3/2. Hence, z = eiπ/6 or z = e5πi/6.

Note that

f (z) =
z− eiπ/6

z− e5πi/6

is an example of such a conformal map.

To see why, we note that it is a Möbius transformation so it sends lines and circles to lines and circles. Note
that f (e5πi/6) = ∞ and f (eiπ/6) = 0. Hence, the boundary of A is sent to the union of two half-lines which
form an angle at the origin. For z in the interval joining e5πi/6 and eiπ/6 (along the line Im(z) = 1/2), note that
z− eiπ/6 ∈ R<0 and z− e5πi/6 ∈ R>0, so f (z) ∈ R<0.

The angle at eiπ/6 between this interval and the rest of the boundary of A forms an angle of −π/3. Since
f is conformal at eiπ/6, we conclude that the boundary of A is sent to the union of R<0 with the half line
e2πi/3R>0. We deduce that A is sent to B. □

Example 7.9. Find a Möbius transformation mapping the upper half-plane onto the unit disc and mapping a
given point z0 in the upper half-plane to 0.

Solution. Note that T maps the real line to the unit disc. Since z0 and z0 are symmetric about the real axis, then
T (z0) and T (z0) = 0 are symmetric with respect to the unit circle. Hence, T (z0) = ∞. As such,

T (z) = λ · z− z0

z− z0

for some λ ∈ C\{0}. Since |T (0)|= 1, then |λ |= 1. Hence,

T (z) = eiθ · z− z0

z− z0

for some θ ∈ R. □

Example 7.10. Find a Möbius transformation that maps from

D = {z : |z|> 1, |z−1|< 2} to G = {w : 0 < Re(w)< 1} .

Solution. Observe that the region D is bounded by two circles x2 + y2 = 1 and (x−1)2 + y2 = 4. The tangent
to these circles is x = −1. We consider the conformal map T (z) = 1/(z+ 1). Since T (R) = R and C1 and C2

are perpendicular to R, it follows that T (C1) and T (C2) are perpendicular to R.

Hence, T (C1) = {z : Re(z) = 1/2} and T (C2) = {z : Re(z) = 1/4}. So, T (D) is bounded by these lines. Let
S(w) = 4w−1. Then, S◦T = (3− z)/(1− z) maps D onto G conformally. □



MA3211 MA3211S MA4247 MA5217 COMPLEX ANALYSIS Page 84 of 95

Example 7.11 (Dinh’s 70 problems). Let T (z) =
az+b
cz+d

be a Möbius transformation.

(i) Assume that z1,z2 ∈ C are two distinct fixed points for T , i.e. T (z j) = z j, j = 1,2. Show that there exists
a constant λ such that

T (z)− z1

T (z)− z2
= λ · z− z1

z− z2
.

(ii) Let T 1(z) := T (z), T n+1(z) := T (T n(z)), n= 1,2,3, . . .. Use (i) to find an expression for T n, n= 1,2,3, . . .,
if

T (z) =
1−3z
z−3

.

Solution.
(i) We have

(T (z)− z1)(z− z2)

(T (z)− z2)(z− z1)
=

(
az+b
cz+d −

az1+b
cz1+d

)
(z− z2)(

az+b
cz+d −

az2+b
cz2+d

)
(z− z1)

=
((az+b)(cz1 +d)− (az1 +b)(cz+d))(cz2 +d)(z− z2)

((az+b)(cz2 +d)− (az2 +b)(cz+d))(cz1 +d)(z− z1)

=
cz2 +d
cz1 +d

so λ =
cz2 +d
cz1 +d

.

(ii) We first find the fixed points of T . Set
−3z+1

z−3
= z, so z = ±1. We can take z1 = −1 and z2 = 1, so by

repeatedly applying (i), we have
T n(z)+1
T n(z)−1

=

(
1
2

)n

· z+1
z−1

.

Definition 7.6 (cross ratio). The cross ratio of a 4-tuple of points z0,z1,z2,z3 ∈ C∗ is defined to be

(z0,z1,z2,z3) =
z0 − z2

z0 − z3
· z1 − z3

z1 − z2
.

When one of the z j is ∞, the RHS is understood as the limit as z → ∞.

Example 7.12.
(∞,z1,z2,z3) =

z1 − z3

z1 − z2
.

Proposition 7.6. A Möbius transformation T preserves cross ratios. That is,

(T (z0),T (z1),T (z2),T (z3)) = (z0,z1,z2,z3)

Lemma 7.2. Given three distinct points z1,z2,z3 ∈ C∗, let T (z) = (z,z1,z2,z3). Then, T is a Möbius
transformation and

T (z1) = 1, T (z2) = 0 and T (z3) = ∞.

In fact, T is the unique Möbius transformation such that the above holds.

Theorem 7.5. Given two sets of three distinct points {z1,z2,z3} and {w1,w2,w3}, there exists a unique
Möbius transformation T such that T (z j) = w j for j = 1,2,3.
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Corollary 7.3. Let z0,z1,z2,z3 be distinct points in C∗. Then, they lie in a circle or a line in C∗ if and
only if (z0,z1,z2,z3) ∈ R.

Example 7.13. Find a Möbius transformation f that maps H bijectively to the disc D(0,2) such that f (i) = 1
and f (1) =−2.

Solution. A Möbius transformation preserves points of symmetry so f (−i) is symmetric to f (i) = 1 with
respect to C(0,2). Hence, f (−i) = 4. Since the Möbius transformation f preserves cross ratios, then

( f (z), f (1), f (i), f (−i)) = (z,1, i,−i)

( f (z),−2,1,4) = (z,1, i,−i)

f (z)−1
f (z)−4

· −6
−3

=
z− i
z+ i

· 1+ i
1− i

Finding f (z) is left as a simple algebraic exercise. Note that f (−1) = 2. □

7.4
Automorphisms of the Unit Disc D

Definition 7.7 (unit disc). Define D to be the unit disc. This is sometimes denoted by D(0,1) which
represents the open disc of radius 1 centred at 0.

Example 7.14. Any rotation by an angle θ ∈ R, i.e. ρθ (z) = eiθ z, is an automorphism of D whose inverse is
e−iθ z.

We can generalise the previous example to the following lemma:

Lemma 7.3 (Blaschke factor). For any a ∈ D, the map

ϕa(z) =
a− z
1−az

is a conformal automorphism of D with inverse ϕ
−1
a = ϕa.

The transformation ϕa is known as the Blaschke factor.

Let Aut(D) denote the set of automorphisms of the unit disc, i.e. all invertible bijections D→ D. For each
c ∈ C with |c| = 1, consider the map z 7→ cz, which is a rotation†. This transformation maps D onto itself and
always fixes 0, i.e.

Aut(D)⊇ {(z 7→ cz) : c ∈ C, |c|= 1} .

For each a ∈ D, define the Möbius transformation ϕa (or ϕ) as follows:

ϕa : C∗ → C∗ such that for all z ∈ C∗ we have ϕ (z) =
z−a

1−az

This corresponds to the matrix [
1 −a
−a 1

]
∈ GL2 (C) .

We observe that [
1 a
a 1

][
1 −a
−a 1

]
=

[
1−|a|2 0

0 1−|a|2

]
lies in Z (GL2 (C)) .

†This is not a scaling transformation because |c|= 1.
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It follows that ϕ−a ◦ϕa is the identity transformation as a Möbius transformation.

Moreover, we observe that for any z ∈ C such that |z|= 1, we have

|ϕa (z)|=
∣∣∣∣ z−a
1−az

∣∣∣∣= |z−a|
|z| |1−az|

=
|z−a|
|z−a|

= 1

which implies that ϕa (∂D) = ∂D. Also, ϕa (0) = −a lies in D so ϕa fixes 0 if and only if a = 0. Hence,
ϕa : D→ D so we conclude that

Aut(D)⊇ {ϕa : a ∈ D} .

Theorem 7.6 (automorphisms of D). For any ϕ ∈ Aut(D), there exist unique a ∈ D and c ∈ C such
that |c|= 1 such that for all z ∈ D, we have

ϕ (z) = c · z−a
1−az

.

Proof. Given ϕ ∈ Aut(D), let a = ϕ−1 (0) ∈ D, so ϕ (a) = 0. Then, ϕ ◦ϕ−a = ϕ ◦ϕ−1
a belongs to Aut(D) as

well and it fixes 0. Note that the stabilizer subgroup of 0 in Aut(D) is the set of maps z 7→ cz such that c ∈ C
and |c|= 1. As such,

ϕ ◦ϕ
−1
a = (z 7→ cz) for a uniquely determined c ∈ C such that |c|= 1.

Hence,

ϕ = (z 7→ cz)◦ϕa =

(
z 7→ c · z−a

1−az

)
.

Example 7.15. Let f be a holomorphic function on D such that | f (z)| ≤ 1 when |z|< 1. Prove that

| f (0)|− |z|
1+ | f (0)||z|

≤ | f (z)| ≤ | f (0)|+ |z|
1−| f (0)||z|

for all |z|< 1.

Solution. We first consider the case where | f (z)|= 1 for some z ∈D. By the maximum modulus principle, f is
constant and so | f (z)|= 1 for all z ∈ D. The above inequality is equivalent to

| f (0)|− |z| ≤ 1+ | f (0)||z| and 1−| f (0)||z| ≤ | f (0)|+ |z|,

so 1−|z| ≤ 1+ |z|, which holds.

Now, consider the case where | f (z)|< 1 for all z ∈ D. Let f (0) = a ∈ D. Note that

φ(z) =
a− z
1−az

∈ Aut(D).

As such, g = φ ◦ f is a holomorphic function from D to itself. Moreover, g(0) = φ( f (0)) = φ(a) = 0. By the
Schwarz Lemma, |g(z)| ≤ |z| for all z ∈ D. Since φ−1 = φ , then

f (z) = (φ−1 ◦g)(z) =
a−g(z)
1−ag(z)

.

As such,∣∣∣∣ a−g(z)
1− āg(z)

∣∣∣∣≤ 1 ⇒ 1−| f (0)| |z| ≤ 1−|ā| |g(z)| ≤ |a−g(z)| ≤ |1− āg(z)| ≤ 1+ |ā| |g(z)| ≤ 1+ | f (0)| |z|
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and in a similar fashion, we can deduce that

| f (0)−|z| ≤ |a|− |g(z)| ≤ |a−g(z)| ≤ |a|+ |g(z)| ≤ | f (0)|+ |z|.

Hence, we have shown that

1−| f (0)|z| ≤ |1−ag(z)| ≤ 1+ | f (0)||z| and | f (0)−|z| ≤ |a−g(z)| ≤ | f (0)|+ |z|.

The desired inequality is thus proven. □

Example 7.16. Find a conformal map T : D(0,1)→ D(1,2) such that T (0) = 1+ i and T (1) = 1−2i. Is the
transformation unique?

Solution. Let S(z) = 2z + 1, which maps D(0,1) to D(1,2) conformally. Define f = S−1 ◦ T , which is an
automorphism of the unit disc. We have S−1(z) = (z−1)/2. So, the conditions T (0) = 1+ i and T (1) = 1−2i
are equivalent to f (0) = i/2 and f (1) =−i. To find such a map f , consider

g(z) =−i ·

i
2
− z

1+
i
2

z

which is a conformal automorphism of D(0,1) such that g(i/2) = 0 and g(−i) = 1. Thus,

f (z) =
i(1−2z)

2− z
.

We conclude that
T (z) =

2(1+ i)− (1+4i)z
2− z

is the required conformal map satisfying the conditions.

Suppose T̃ also satisfies the requirements. Then, R= T−1◦ T̃ is a conformal automorphism of D(0,1) satisfying
R(0) = 0 and R(1) = 1. It is known that all automorphisms of the unit disc which fix 0 are rotations. Hence, R
is the identity function so we conclude that T̃ = T . □

Example 7.17. Let f : D→C be a holomorphic function. Suppose f (0) = 0 and there exists a constant A > 0
such that Re( f (z))≤ A for z ∈ D. Prove that for z ∈ D,

| f (z)| ≤ 2A|z|
1−|z|

.

Solution. Since f (0) = 0, then f is identically 0 or f is not identically constant. If f (z) = 0 for all z ∈ D, the
inequality is obvious. Suppose f is not identically constant. Consider

φ1(z) =− z
A
+1, φ2(z) =

1− z
1+ z

and φ(z) = (φ2 ◦φ1)(z) =
z

2A− z
.

Note that φ1 is a conformal map from {Re(z)< A} to {Re(z)> 0} and sends 0 to 1; φ2 is a conformal map
from {Re(z)> 0} to the unit disc and sends 1 to 0. Hence, φ is a conformal map from {Re(z)< A} to the unit
disc and sends 0 to 0. As such, F = φ ◦ f is a holomorphic map from D to itself and F(0) = 0.

By the Schwarz Lemma, note that the conditions F(0) = 0 and |F(z)| ≤ 1 are satisfied since z ∈ D. Hence,
|F(z)| ≤ |z|. That is to say,

|z| ≥ |φ( f (z))|=
∣∣∣∣ f (z)
2A− f (z)

∣∣∣∣ .
The desired inequality follows with some simple algebraic manipulation. □
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Example 7.18 (Dinh’s 70 problems). Suppose that f is holomorphic on the open set containing D, | f (z)| ≤ 4
if |z|= 1 and f (i/2) = 0. Show that for all |z| ≤ 1,

| f (z)| ≤ 4
∣∣∣∣ z− i/2
1+ i/2 · z

∣∣∣∣ .
Solution. Note that g(z) =

a− z
1−az

is an automorphism of D, so we set f (z) = 4g(z) and a = i/2. The result
follows. □

Example 7.19 (Dinh’s 70 problems). Show that if D(0,R) → C is holomorphic with | f (z)| < M for some
M > 0, then ∣∣∣∣∣ f (z)− f (0)

M2 − f (0) f (z)

∣∣∣∣∣≤ |z|
MR

.

Solution. Let a = f (0). We wish to prove ∣∣∣∣ a− f (z)
M2 −a f (z)

∣∣∣∣≤ |z|
MR

.

Define φ : D→ D via

φ(z) =
a/M− z

1− (a/M)z
.

Note that a/M = a/M since M ∈ R. So, define g = φ ◦ f (Rz)
M

. It is clear that g(0) = 0 and g : D→ D. By the
Schwarz Lemma, |g(z)| ≤ |z| for all z ∈ D. Hence,

|g(z)| ≤ |z|
1
M

∣∣∣∣ a− f (Rz)
1− ā f (Rz)/M2

∣∣∣∣≤ |z|

M2

M

∣∣∣∣ a− f (Rz)
M2 − ā f (Rz)

∣∣∣∣≤ |z|∣∣∣∣ a− f (z)
M2 − ā f (z)

∣∣∣∣≤ |z|
MR

and we are done. □

Lemma 7.4 (Schwarz-Pick lemma). Let f : D→ D be a holomorphic function, a ∈ D and f (a) = b.
Then,

(i) for each z ∈ D, |ϕb( f (z))| ≤ |ϕa(z)|

(ii) | f ′(a)| ≤ 1−|b|2

1−|a|2
If equality holds in (ii) or if we have equality in (i) for some z ̸= a, then f ∈ Aut(D).

7.5
Maps from the Upper Half-Plane H to the Unit Disc D

Definition 7.8 (upper half-plane). Define H= {z ∈ C : Im(z)> 0} to be the upper half-plane.

Lemma 7.5. Let
F(z) =

i− z
i+ z

and G(w) = i · 1−w
1+w

.
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Then, F : H→ D is a conformal map with inverse G : D→H.

Theorem 7.7. All conformal mappings from H to D take the form{
eiθ z−β

z−β
: θ ∈ R,β ∈H

}
.

7.6
Automorphisms of the Upper Half-Plane H

Theorem 7.8.
Aut(H) =

{
az+b
cz+d

: a,b,c,d ∈ R and ad −bc = 1
}

Proof. Let a,b,c,d ∈ R and ad −bc > 0. Define a′,b′,c′,d′ to be as follows:

a
a′

=
b
b′

=
c
c′

=
d
d′ =

√
ad −bc,

where a′,b′,c′,d′ ∈ R and a′d′−b′c′ = 1. As such,

G =

{
az+b
cz+d

: a,b,c,d ∈ R and ad −bc = 1
}
=

{
az+b
cz+d

: a,b,c,d ∈ R and ad −bc > 0
}
.

We shall prove that G ⊆ Aut(H). Let

f (z) =
az+b
cz+d

∈ G.

Then, f : R→ R. If we let z = x+ iy, where x,y ∈ R, Since a,b,c,d ∈ R, then

Im( f (z)) = Im
[

a(x+ iy)+b
c(x+ iy)+d

]
= Im

[
ax+b+ i(ay)
cx+d + i(cy)

· cx+d − i(cy)
cx+d − i(cy)

]
= Im

[
ac
(
x2 + y2

)
+bcx+adx+bd + iy(ad −bc)

c2 (x2 + y2)+2cdx+d2

]

= Im(z) · ad −bc

c2|z|2 +2cdx+d2

= Im(z) · ad −bc

|cz+d|2

which shows f : H→H. It is clear that

g(z) =
−dz+b
cz−a

∈ G

and g◦ f = id. Hence, f ∈ Aut(H) and G ⊆ Aut(H).

Conversely, let f be an arbitrary map in Aut(H). We will show that f ∈ G. Define

F(z) =
i− z
i+ z

which is a conformal map from H to D with inverse

F−1(z) = i · 1− z
1+ z
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and this maps from D to H. Hence, h = F ◦ f is a conformal map from H to D. All such a map h must be of the
form

e2iθ z−β

z−β

with β ∈H and θ ∈ R. We let the reader prove that

f (z) = F−1
(

e2iθ z−β

z−β

)
=

az+b
cz+d

and ad −bc = Im(β )> 0 which would show that f ∈ G, so Aut(H)⊆ G.

Example 7.20 (Dinh’s 70 problems). Find a conformal map from

H = {z ∈ C : Re(z)> 0}

onto
A = {z ∈ C : |z−2|< 3, |z|> 1} .

You may leave your answer as a composition of conformal mappings.

Solution. We find a conformal map from A to H first.
• Let φ1(z) = 1/(z+1). Let us figure out what A gets mapped to via φ1. So, if we let w = 1/(z+1), we

have z = 1/w− 1. Consider the annulus |z− 2| < 3, so after the transformation, we have w > 1/6. For
the region |z|> 1, we have 1/w > 2. So, φ1 maps A to A1, where A1 = {z ∈ C : 1/6 < Re(z)< 1/2}.

• Let φ2(z) = z− 1
6

. So, φ2 maps A1 to A2 = {z ∈ C : 0 < Re(z)< 1/3}.

• Let φ3(z) = tan
(

3πz
2

)
, which maps A2 to H.

As such, the required conformal map from H to A is φ
−1
3 ◦φ

−1
2 ◦φ

−1
1 . □

Example 7.21 (Dinh’s 70 problems). Let f : D(0,1)→C be a holomorphic function such that Re( f (z))> 0
for each z ∈ D(0,1) and such that f (0) = 1.

(a) Prove that | f ′(0)| ≤ 2.
(b) Assume that | f ′(0)|= 2. Determine all possible forms of f .

Solution.
(a) We first find a holomorphic map from {z ∈ C : Re(z)> 0} to D. To do this, let φ1(z) = iz, which maps

the right half of the complex plane to the upper half, H. Then, recall that φ2(z) =
z− i
z+ i

maps H to D. So,
φ = φ2 ◦φ1 is the required holomorphic map. We have

φ(z) =
iz− i
iz+ i

=
z−1
z+1

.

Define F = φ ◦ f so F : D→D, i.e. F is an automorphism of the unit disk and F(0) = 0. By the Schwarz
Lemma, |F ′(0)| ≤ 1, so |φ ′(1) f ′(0)| ≤ 1. Since φ ′(1) = 1/2, the result follows.

(b) Suppose equality holds. Then, F ′(0) = 1, where

F(z) =
f (z)−1
f (z)+1

.

Then, F(z) = zeiθ (recall that this is just rotating some point in the unit disk about the origin) for θ ∈ R.
One can work out that f = φ−1 ◦F and find an explicit expression for it.
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Chapter 8
Harmonic Functions

8.1
Basic Properties of Harmonic Functions

Recall that a real-valued function u is defined on a domain Ω ⊆ C is harmonic if it belongs to C2 (second
derivative of f is continuous on Ω) and ∆u = 0. The real and imaginary parts of a holomorphic function are
harmonic.

Proposition 8.1. Let Ω be a simply connected domain in C. A function u : Ω → R is harmonic if and
only if u is the real part of some holomorphic function on Ω.

The above proposition implies that for any domain Ω, u is harmonic if and only if it is locally the real (or
imaginary) part of a holomorphic function. In particular, harmonic functions belong to C∞.

Example 8.1. Consider the function

u(x,y) =
1
2

log(x2 + y2)

on the annulus Ω = {0 < r < |z|< R}. This is not a simply connected domain, which means that not all simple
closed curves in Ω can be shrunk to a point while remaining in Ω. One can establish that u is harmonic but
there is no holomorphic function on Ω whose real part is equal to u.

Showing that u is harmonic, i.e.
∂ 2u
∂x2 +

∂ 2u
∂y2 = 0

is simple

Example 8.2. Prove that the function

u(x,y) =
sinx

cosx+ coshy

is harmonic in

Ω = {x+ iy : −π < x < π and y ∈ R} .

Solution. One can see that coshy = cos(iy), so by setting z = x+ iy, where −π < x < π and y ∈ R, it is clear
that

u(x,y) = Re
(

tan
( z

2

))
.

□

Example 8.3 (Dinh’s 70 problems). Let f = u+ iv be a holomorphic function in an open set Ω. Define

U := eu2−v2
cos(2uv) and V := eu2−v2

sin(2uv).

Show that U is harmonic and V is a harmonic conjugate of U .
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Solution. To show that U is harmonic, we need to show that it satisfies Laplace’s Equation, i.e. Uuu +Uvv = 0.
This is trivial. Next, one of the Cauchy-Riemann Equations states that Uu =Vv, so

Vv =−2eu2−v2
(vsin(2uv)−ucos(2uv)) .

Using integration by parts or Euler’s Formula, it can be shown that
∫

Vv dv = V + c, where c is an arbitrary
constant. This shows that V is a harmonic conjugate of U . □

Theorem 8.1 (maximum-minimum principle). If u is a real-valued non-constant harmonic function on
a domain Ω, then u has no local maximum and no local minimum on Ω.

8.2
Dirichlet Problem and Poisson Kernel

Theorem 8.2 (Dirichlet problem). Let Ω be a bounded domain in C. Given a function h : ∂Ω → R, is
there a unique continuous function u : Ω → R such that{

∆u = 0 in Ω;
u = h on ∂Ω?

In layman’s terms, think of u being harmonic on the interior and u = h on the boundary.

Definition 8.1 (Poisson kernel). Define the Poisson kernel of the unit disc to be

P(a,eiθ ) =
1

2π
· 1−|a|2

|eiθ −a|2
.

We shall consider the case where Ω is the unit disc D. The following theorem gives the uniqueness of the
solution to the Dirichlet problem.

Theorem 8.3. Let u : D→ R be a continuous function which is harmonic in D. Then, for each a ∈ D,

u(a) =
∫ 2π

0
P(a,eiθ )u(eiθ ) dθ .

Proof. Consider the automorphism of D, which is

f (z) =
a− z

1−az.

Note that f (0) = a and f is self-inverse. Find f ′ and f ′/ f , then use Gauss’ mean value theorem to prove the
result.

Corollary 8.1 (Harnack’s inequality). Let u be a harmonic function in a neighborhood of D. Assume
that u ≥ 0 on {|z|= 1}. Then,

1−|z|
1+ |z|

u(0)≤ u(z)≤ 1+ |z|
1−|z|

u(0)

for |z|< 1.
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Proof. Apply the Poisson kernel formula. Consider the region |z| < 1 and the identity 1−|z|2 = (1+ |z|)(1−
|z|).
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Chapter 9
Analytic Continuation

9.1
Analytic Continuation

Definition 9.1 (analytic continuation). Let f be a holomorphic function defined on a domain Ω. If
there exists a domain Ω ⊆ Ω′ and a holomorphic function F : Ω′ → C such that F(z) = f (z) for each
z ∈ Ω, then F is an analytic continuation of f on Ω′.

Example 9.1. The power series

f (z) = 1+ z+ z2 + . . .

has a radius of convergence R = 1 and so f (z) is a holomorphic function on the unit disc D. On the other hand,
one can see that

f (z) =
1

1− z
for |z|< 1

but g(z) = 1/(1− z) is holomorphic on C \ {1}. Thus, g is an analytic continuation of f to the much bigger
domain C\{1}.

Lemma 9.1. Let Ω ⊆ Ω′ be domains in C. Let F1 and F2 be analytic continuations of a holomorphic
function f : Ω → C to a domain Ω′. Then,

F1 (z) = F2 (z) for all z ∈ Ω
′.

Lemma 9.2. Let f j : Ω j →C be holomorphic functions such that f1 (z) = f2 (z) for z ∈ Ω1 ∩Ω2. Then,

f (z) =

 f1 (z) if z ∈ Ω1;

f2 (z) if z ∈ Ω2 \Ω1.

9.2
Schwarz Reflection Principle

We say that a region Ω is symmetric with respect to the real axis if z ∈ Ω implies z ∈ Ω. We consider here
an important particular case of analytic continuation.

Theorem 9.1 (reflection principle for holomorphic functions). Define Ω+,Ω−,L as the intersections
of Ω with the upper half-plane, lower half-plane, and the real axis respectively. If f is a continuous
complex-valued function on Ω+∪L, which is analytic on Ω+ and real on L, then

f admits a unique extension to a holomorphic function F on Ω.
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Moreover, the extension is given by

F (z) =

 f (z) for z ∈ Ω+∪L;

f (z) for z ∈ Ω−.

In particular, F (z) = F (z) for all z ∈ Ω.

Example 9.2 (MA5217 Lecture Notes). Suppose f is holomorphic on H and continuous on S = H∪ (0,1).
Assume f (x) = x4 −2x2 for all x ∈ (0,1). Find f (i).

Solution. We have f (i) = i4 −2i2 = 1+2 = 3. □
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